Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Oct 1;359(Pt 1):175–181. doi: 10.1042/0264-6021:3590175

Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance.

S B Walsh 1, T A Dolden 1, G D Moores 1, M Kristensen 1, T Lewis 1, A L Devonshire 1, M S Williamson 1
PMCID: PMC1222133  PMID: 11563981

Abstract

Acetylcholinesterase (AChE) insensitive to organophosphate and carbamate insecticides has been identified as a major resistance mechanism in numerous arthropod species. However, the associated genetic changes have been reported in the AChE genes from only three insect species; their role in conferring insecticide insensitivity has been confirmed, using functional expression, only for those in Drosophila melanogaster. The housefly, Musca domestica, was one of the first insects shown to have this mechanism; here we report the occurrence of five mutations (Val-180-->Leu, Gly-262-->Ala, Gly-262-->Val, Phe-327-->Tyr and Gly-365-->Ala) in the AChE gene of this species that, either singly or in combination, confer different spectra of insecticide resistance. The baculovirus expression of wild-type and mutated housefly AChE proteins has confirmed that the mutations each confer relatively modest levels of insecticide insensitivity except the novel Gly-262-->Val mutation, which results in much stronger resistance (up to 100-fold) to certain compounds. In all cases the effects of mutation combinations are additive. The mutations introduce amino acid substitutions that are larger than the corresponding wild-type residues and are located within the active site of the enzyme, close to the catalytic triad. The likely influence of these substitutions on the accessibility of the different types of inhibitor and the orientation of key catalytic residues are discussed in the light of the three-dimensional structures of the AChE protein from Torpedo californica and D. melanogaster.

Full Text

The Full Text of this article is available as a PDF (162.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barth M. L., Fensom A., Harris A. Missense mutations in the arylsulphatase A genes of metachromatic leukodystrophy patients. Hum Mol Genet. 1993 Dec;2(12):2117–2121. doi: 10.1093/hmg/2.12.2117. [DOI] [PubMed] [Google Scholar]
  2. Baxter G. D., Barker S. C. Acetylcholinesterase cDNA of the cattle tick, Boophilus microplus: characterisation and role in organophosphate resistance. Insect Biochem Mol Biol. 1998 Aug;28(8):581–589. doi: 10.1016/s0965-1748(98)00034-4. [DOI] [PubMed] [Google Scholar]
  3. Bourguet D., Raymond M., Fournier D., Malcolm C. A., Toutant J. P., Arpagaus M. Existence of two acetylcholinesterases in the mosquito Culex pipiens (Diptera:Culicidae). J Neurochem. 1996 Nov;67(5):2115–2123. doi: 10.1046/j.1471-4159.1996.67052115.x. [DOI] [PubMed] [Google Scholar]
  4. Chaabihi H., Fournier D., Fedon Y., Bossy J. P., Ravallec M., Devauchelle G., Cérutti M. Biochemical characterization of Drosophila melanogaster acetylcholinesterase expressed by recombinant baculoviruses. Biochem Biophys Res Commun. 1994 Aug 30;203(1):734–742. doi: 10.1006/bbrc.1994.2243. [DOI] [PubMed] [Google Scholar]
  5. Derewenda U., Brzozowski A. M., Lawson D. M., Derewenda Z. S. Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. Biochemistry. 1992 Feb 11;31(5):1532–1541. doi: 10.1021/bi00120a034. [DOI] [PubMed] [Google Scholar]
  6. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  7. Harel M., Kryger G., Rosenberry T. L., Mallender W. D., Lewis T., Fletcher R. J., Guss J. M., Silman I., Sussman J. L. Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Sci. 2000 Jun;9(6):1063–1072. doi: 10.1110/ps.9.6.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hernandez R., He H., Chen A. C., Ivie G. W., George J. E., Wagner G. G. Cloning and sequencing of a putative acetylcholinesterase cDNA from Boophilus microplus (Acari: Ixodidae). J Med Entomol. 1999 Nov;36(6):764–770. doi: 10.1093/jmedent/36.6.764. [DOI] [PubMed] [Google Scholar]
  9. Hosea N. A., Berman H. A., Taylor P. Specificity and orientation of trigonal carboxyl esters and tetrahedral alkylphosphonyl esters in cholinesterases. Biochemistry. 1995 Sep 12;34(36):11528–11536. doi: 10.1021/bi00036a028. [DOI] [PubMed] [Google Scholar]
  10. Huang Y., Qiao C., Williamson M. S., Devonshire A. L. Characterization of the acetylcholinesterase gene from insecticide-resistant houseflies (Musca domestica). Chin J Biotechnol. 1997;13(3):177–183. [PubMed] [Google Scholar]
  11. Kovach I. M. Structure and dynamics of serine hydrolase-organophosphate adducts. J Enzyme Inhib. 1988;2(3):199–208. doi: 10.3109/14756368809040726. [DOI] [PubMed] [Google Scholar]
  12. Malcolm C. A., Bourguet D., Ascolillo A., Rooker S. J., Garvey C. F., Hall L. M., Pasteur N., Raymond M. A sex-linked Ace gene, not linked to insensitive acetylcholinesterase-mediated insecticide resistance in Culex pipiens. Insect Mol Biol. 1998 May;7(2):107–120. doi: 10.1046/j.1365-2583.1998.72055.x. [DOI] [PubMed] [Google Scholar]
  13. Martinez C., Nicolas A., van Tilbeurgh H., Egloff M. P., Cudrey C., Verger R., Cambillau C. Cutinase, a lipolytic enzyme with a preformed oxyanion hole. Biochemistry. 1994 Jan 11;33(1):83–89. doi: 10.1021/bi00167a011. [DOI] [PubMed] [Google Scholar]
  14. Mutero A., Pralavorio M., Bride J. M., Fournier D. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5922–5926. doi: 10.1073/pnas.91.13.5922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ollis D. L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S. M., Harel M., Remington S. J., Silman I., Schrag J. The alpha/beta hydrolase fold. Protein Eng. 1992 Apr;5(3):197–211. doi: 10.1093/protein/5.3.197. [DOI] [PubMed] [Google Scholar]
  16. Radić Z., Pickering N. A., Vellom D. C., Camp S., Taylor P. Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry. 1993 Nov 16;32(45):12074–12084. doi: 10.1021/bi00096a018. [DOI] [PubMed] [Google Scholar]
  17. Staden R. The Staden sequence analysis package. Mol Biotechnol. 1996 Jun;5(3):233–241. doi: 10.1007/BF02900361. [DOI] [PubMed] [Google Scholar]
  18. Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]
  19. Thomas B. A., Church W. B., Lane T. R., Hammock B. D. Homology model of juvenile hormone esterase from the crop pest, Heliothis virescens. Proteins. 1999 Feb 1;34(2):184–196. [PubMed] [Google Scholar]
  20. Tomita T., Hidoh O., Kono Y. Absence of protein polymorphism attributable to insecticide-insensitivity of acetylcholinesterase in the green rice leafhopper, Nephotettix cincticeps. Insect Biochem Mol Biol. 2000 Apr;30(4):325–333. doi: 10.1016/s0965-1748(00)00006-0. [DOI] [PubMed] [Google Scholar]
  21. Vaughan A., Rocheleau T., ffrench-Constant R. Site-directed mutagenesis of an acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti confers insecticide insensitivity. Exp Parasitol. 1997 Nov;87(3):237–244. doi: 10.1006/expr.1997.4244. [DOI] [PubMed] [Google Scholar]
  22. Vellom D. C., Radić Z., Li Y., Pickering N. A., Camp S., Taylor P. Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry. 1993 Jan 12;32(1):12–17. doi: 10.1021/bi00052a003. [DOI] [PubMed] [Google Scholar]
  23. Williamson M. S., Martinez-Torres D., Hick C. A., Devonshire A. L. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol Gen Genet. 1996 Aug 27;252(1-2):51–60. doi: 10.1007/BF02173204. [DOI] [PubMed] [Google Scholar]
  24. Zhu KY, Lee SH, Clark JM. A Point Mutation of Acetylcholinesterase Associated with Azinphosmethyl Resistance and Reduced Fitness in Colorado Potato Beetle. Pestic Biochem Physiol. 1996 Jun;55(2):100–108. doi: 10.1006/pest.1996.0039. [DOI] [PubMed] [Google Scholar]
  25. ffrench-Constant R. H., Pittendrigh B., Vaughan A., Anthony N. Why are there so few resistance-associated mutations in insecticide target genes? Philos Trans R Soc Lond B Biol Sci. 1998 Oct 29;353(1376):1685–1693. doi: 10.1098/rstb.1998.0319. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES