Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Oct 1;359(Pt 1):183–192. doi: 10.1042/0264-6021:3590183

Internal ribosome entry segment-mediated initiation of c-Myc protein synthesis following genotoxic stress.

T Subkhankulova 1, S A Mitchell 1, A E Willis 1
PMCID: PMC1222134  PMID: 11563982

Abstract

Initiation of translation of the proto-oncogene c-myc can occur by either the cap-dependent scanning mechanism or by internal ribosome entry. The latter mechanism requires a complex RNA structural element that is located in the 5' untranslated region of c-myc, termed an internal ribosome entry segment (IRES). Recent work has shown that IRESs are used to maintain protein expression under conditions when cap-dependent translation initiation is compromised; for example, during mitosis, apoptosis and under conditions of cell stress, such as hypoxia or heat shock. Induction of genotoxic stress also results in a large reduction in global protein synthesis rates and therefore we investigated whether the c-myc IRES was active following DNA damage. As expected, in cells treated with either ethylmethane sulphonate or mitomycin C there was a large reduction in protein synthesis, although this was brought about by two different mechanisms. However, in each case the c-myc IRES was active and c-Myc protein expression was maintained. Finally we showed that the proteins required for this process are downstream of the p38 mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated protein kinase (ERK)/MEK(MAPK/ERK kinase) signalling pathways, since pre-treatment of cells with inhibitors of these pathways before DNA damage is initiated inhibits both c-myc IRES activity and expression of c-Myc protein.

Full Text

The Full Text of this article is available as a PDF (367.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balachandran S., Kim C. N., Yeh W. C., Mak T. W., Bhalla K., Barber G. N. Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling. EMBO J. 1998 Dec 1;17(23):6888–6902. doi: 10.1093/emboj/17.23.6888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blackwood E. M., Eisenman R. N. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science. 1991 Mar 8;251(4998):1211–1217. doi: 10.1126/science.2006410. [DOI] [PubMed] [Google Scholar]
  3. Blackwood E. M., Lüscher B., Eisenman R. N. Myc and Max associate in vivo. Genes Dev. 1992 Jan;6(1):71–80. doi: 10.1101/gad.6.1.71. [DOI] [PubMed] [Google Scholar]
  4. Brewer G., Ross J. Poly(A) shortening and degradation of the 3' A+U-rich sequences of human c-myc mRNA in a cell-free system. Mol Cell Biol. 1988 Apr;8(4):1697–1708. doi: 10.1128/mcb.8.4.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brewer G., Ross J. Regulation of c-myc mRNA stability in vitro by a labile destabilizer with an essential nucleic acid component. Mol Cell Biol. 1989 May;9(5):1996–2006. doi: 10.1128/mcb.9.5.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bushell M., McKendrick L., Jänicke R. U., Clemens M. J., Morley S. J. Caspase-3 is necessary and sufficient for cleavage of protein synthesis eukaryotic initiation factor 4G during apoptosis. FEBS Lett. 1999 May 28;451(3):332–336. doi: 10.1016/s0014-5793(99)00614-6. [DOI] [PubMed] [Google Scholar]
  7. Bushell M., Wood W., Clemens M. J., Morley S. J. Changes in integrity and association of eukaryotic protein synthesis initiation factors during apoptosis. Eur J Biochem. 2000 Feb;267(4):1083–1091. doi: 10.1046/j.1432-1327.2000.01101.x. [DOI] [PubMed] [Google Scholar]
  8. Chen J. J., London I. M. Regulation of protein synthesis by heme-regulated eIF-2 alpha kinase. Trends Biochem Sci. 1995 Mar;20(3):105–108. doi: 10.1016/s0968-0004(00)88975-6. [DOI] [PubMed] [Google Scholar]
  9. Clemens M. J., Bushell M., Jeffrey I. W., Pain V. M., Morley S. J. Translation initiation factor modifications and the regulation of protein synthesis in apoptotic cells. Cell Death Differ. 2000 Jul;7(7):603–615. doi: 10.1038/sj.cdd.4400695. [DOI] [PubMed] [Google Scholar]
  10. Clemens M. J., Bushell M., Morley S. J. Degradation of eukaryotic polypeptide chain initiation factor (eIF) 4G in response to induction of apoptosis in human lymphoma cell lines. Oncogene. 1998 Dec 3;17(22):2921–2931. doi: 10.1038/sj.onc.1202227. [DOI] [PubMed] [Google Scholar]
  11. Coldwell M. J., Mitchell S. A., Stoneley M., MacFarlane M., Willis A. E. Initiation of Apaf-1 translation by internal ribosome entry. Oncogene. 2000 Feb 17;19(7):899–905. doi: 10.1038/sj.onc.1203407. [DOI] [PubMed] [Google Scholar]
  12. Cornelis S., Bruynooghe Y., Denecker G., Van Huffel S., Tinton S., Beyaert R. Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol Cell. 2000 Apr;5(4):597–605. doi: 10.1016/s1097-2765(00)80239-7. [DOI] [PubMed] [Google Scholar]
  13. Dang C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999 Jan;19(1):1–11. doi: 10.1128/mcb.19.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fernandez J., Yaman I., Mishra R., Merrick W. C., Snider M. D., Lamers W. H., Hatzoglou M. Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability. J Biol Chem. 2000 Dec 12;276(15):12285–12291. doi: 10.1074/jbc.M009714200. [DOI] [PubMed] [Google Scholar]
  15. Fukunaga R., Hunter T. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 1997 Apr 15;16(8):1921–1933. doi: 10.1093/emboj/16.8.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gray N. K., Wickens M. Control of translation initiation in animals. Annu Rev Cell Dev Biol. 1998;14:399–458. doi: 10.1146/annurev.cellbio.14.1.399. [DOI] [PubMed] [Google Scholar]
  17. Hann S. R., Eisenman R. N. Proteins encoded by the human c-myc oncogene: differential expression in neoplastic cells. Mol Cell Biol. 1984 Nov;4(11):2486–2497. doi: 10.1128/mcb.4.11.2486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Harding H. P., Zhang Y., Bertolotti A., Zeng H., Ron D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell. 2000 May;5(5):897–904. doi: 10.1016/s1097-2765(00)80330-5. [DOI] [PubMed] [Google Scholar]
  19. Henis-Korenblit S., Strumpf N. L., Goldstaub D., Kimchi A. A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation. Mol Cell Biol. 2000 Jan;20(2):496–506. doi: 10.1128/mcb.20.2.496-506.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Henriksson M., Lüscher B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res. 1996;68:109–182. doi: 10.1016/s0065-230x(08)60353-x. [DOI] [PubMed] [Google Scholar]
  21. Holcik M., Korneluk R. G. Functional characterization of the X-linked inhibitor of apoptosis (XIAP) internal ribosome entry site element: role of La autoantigen in XIAP translation. Mol Cell Biol. 2000 Jul;20(13):4648–4657. doi: 10.1128/mcb.20.13.4648-4657.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Holcik M., Lefebvre C., Yeh C., Chow T., Korneluk R. G. A new internal-ribosome-entry-site motif potentiates XIAP-mediated cytoprotection. Nat Cell Biol. 1999 Jul;1(3):190–192. doi: 10.1038/11109. [DOI] [PubMed] [Google Scholar]
  23. Holcik M., Yeh C., Korneluk R. G., Chow T. Translational upregulation of X-linked inhibitor of apoptosis (XIAP) increases resistance to radiation induced cell death. Oncogene. 2000 Aug 24;19(36):4174–4177. doi: 10.1038/sj.onc.1203765. [DOI] [PubMed] [Google Scholar]
  24. Jordan M., Schallhorn A., Wurm F. M. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res. 1996 Feb 15;24(4):596–601. doi: 10.1093/nar/24.4.596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lee C. H., Leeds P., Ross J. Purification and characterization of a polysome-associated endoribonuclease that degrades c-myc mRNA in vitro. J Biol Chem. 1998 Sep 25;273(39):25261–25271. doi: 10.1074/jbc.273.39.25261. [DOI] [PubMed] [Google Scholar]
  26. Marcu K. B., Bossone S. A., Patel A. J. myc function and regulation. Annu Rev Biochem. 1992;61:809–860. doi: 10.1146/annurev.bi.61.070192.004113. [DOI] [PubMed] [Google Scholar]
  27. Miller D. L., Dibbens J. A., Damert A., Risau W., Vadas M. A., Goodall G. J. The vascular endothelial growth factor mRNA contains an internal ribosome entry site. FEBS Lett. 1998 Sep 4;434(3):417–420. doi: 10.1016/s0014-5793(98)01025-4. [DOI] [PubMed] [Google Scholar]
  28. Morley S. J., Jeffrey I., Bushell M., Pain V. M., Clemens M. J. Differential requirements for caspase-8 activity in the mechanism of phosphorylation of eIF2alpha, cleavage of eIF4GI and signaling events associated with the inhibition of protein synthesis in apoptotic Jurkat T cells. FEBS Lett. 2000 Jul 21;477(3):229–236. doi: 10.1016/s0014-5793(00)01805-6. [DOI] [PubMed] [Google Scholar]
  29. Nanbru C., Lafon I., Audigier S., Gensac M. C., Vagner S., Huez G., Prats A. C. Alternative translation of the proto-oncogene c-myc by an internal ribosome entry site. J Biol Chem. 1997 Dec 19;272(51):32061–32066. doi: 10.1074/jbc.272.51.32061. [DOI] [PubMed] [Google Scholar]
  30. Proud C. G. p70 S6 kinase: an enigma with variations. Trends Biochem Sci. 1996 May;21(5):181–185. [PubMed] [Google Scholar]
  31. Pyronnet S., Pradayrol L., Sonenberg N. A cell cycle-dependent internal ribosome entry site. Mol Cell. 2000 Apr;5(4):607–616. doi: 10.1016/s1097-2765(00)80240-3. [DOI] [PubMed] [Google Scholar]
  32. Sheikh M. S., Fornace A. J., Jr Regulation of translation initiation following stress. Oncogene. 1999 Nov 1;18(45):6121–6128. doi: 10.1038/sj.onc.1203131. [DOI] [PubMed] [Google Scholar]
  33. Stein I., Itin A., Einat P., Skaliter R., Grossman Z., Keshet E. Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol. 1998 Jun;18(6):3112–3119. doi: 10.1128/mcb.18.6.3112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stoneley M., Chappell S. A., Jopling C. L., Dickens M., MacFarlane M., Willis A. E. c-Myc protein synthesis is initiated from the internal ribosome entry segment during apoptosis. Mol Cell Biol. 2000 Feb;20(4):1162–1169. doi: 10.1128/mcb.20.4.1162-1169.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stoneley M., Paulin F. E., Le Quesne J. P., Chappell S. A., Willis A. E. C-Myc 5' untranslated region contains an internal ribosome entry segment. Oncogene. 1998 Jan 22;16(3):423–428. doi: 10.1038/sj.onc.1201763. [DOI] [PubMed] [Google Scholar]
  36. Stoneley M., Subkhankulova T., Le Quesne J. P., Coldwell M. J., Jopling C. L., Belsham G. J., Willis A. E. Analysis of the c-myc IRES; a potential role for cell-type specific trans-acting factors and the nuclear compartment. Nucleic Acids Res. 2000 Feb 1;28(3):687–694. doi: 10.1093/nar/28.3.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tee A. R., Proud C. G. DNA-damaging agents cause inactivation of translational regulators linked to mTOR signalling. Oncogene. 2000 Jun 15;19(26):3021–3031. doi: 10.1038/sj.onc.1203622. [DOI] [PubMed] [Google Scholar]
  38. Vagner S., Touriol C., Galy B., Audigier S., Gensac M. C., Amalric F., Bayard F., Prats H., Prats A. C. Translation of CUG- but not AUG-initiated forms of human fibroblast growth factor 2 is activated in transformed and stressed cells. J Cell Biol. 1996 Dec;135(5):1391–1402. doi: 10.1083/jcb.135.5.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Waskiewicz A. J., Flynn A., Proud C. G., Cooper J. A. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 1997 Apr 15;16(8):1909–1920. doi: 10.1093/emboj/16.8.1909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. West M. J., Stoneley M., Willis A. E. Translational induction of the c-myc oncogene via activation of the FRAP/TOR signalling pathway. Oncogene. 1998 Aug 13;17(6):769–780. doi: 10.1038/sj.onc.1201990. [DOI] [PubMed] [Google Scholar]
  41. West M. J., Sullivan N. F., Willis A. E. Translational upregulation of the c-myc oncogene in Bloom's syndrome cell lines. Oncogene. 1995 Dec 21;11(12):2515–2524. [PubMed] [Google Scholar]
  42. Williams B. R. PKR; a sentinel kinase for cellular stress. Oncogene. 1999 Nov 1;18(45):6112–6120. doi: 10.1038/sj.onc.1203127. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES