Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Biochemical Journal logoLink to Biochemical Journal
. 2001 Oct 1;359(Pt 1):219–226. doi: 10.1042/0264-6021:3590219

A precursor form of vascular endothelial growth factor arises by initiation from an upstream in-frame CUG codon.

M K Tee 1, R B Jaffe 1
PMCID: PMC1222138  PMID: 11563986

Abstract

Vascular endothelial growth factor (VEGF) is a mitogen in physiological and pathological angiogenesis. Understanding the expression of different VEGF isoforms might be important for distinguishing angiogenesis in tissue development, vascular remodelling and tumour formation. We examined its expression and noted the presence of the isoforms VEGF(121) and VEGF(165) (121 and 165 residues long respectively) in fetal heart, lung, ovary, spleen, placenta and ovarian tumours. Unexpectedly, a 47 kDa species predominated in fetal intestine and muscle. The presumed initiation site in VEGF is an AUG codon (AUG(1039)), 1039 nt from its main transcriptional start site. AUG(1039) is preceded in the 5' untranslated region by an in-frame CUG at nt 499 (CUG(499)), which could produce the 47 kDa form with a 180-residue N-terminal extension. We therefore assessed whether CUG(499) functions as an initiator. CUG(499) initiation produced the 47 kDa VEGF(165) precursor, which was processed at two sites to yield VEGF and three N-terminal fragments. When CTG(499) was mutated to CGC, the precursor and N-terminal fragments were barely detectable. Although the precursor form was predominant in VEGF(165), both CUG(499) and AUG(1039) forms were found in VEGF(121). VEGF precursor induced neither the proliferation of human umbilical vein endothelial cells nor the expression of angiopoietin 2, which can be induced by, and act with, VEGF to induce tumour angiogenesis. The precursor also adheres to the extracellular matrix (ECM), suggesting that it might be a storage form for generating active VEGF in the cell or ECM. Alternate CUG(499) and AUG(1039) initiation and processing of the inactive precursor and its products might be important in regulating angiogenesis.

Full Text

The Full Text of this article is available as a PDF (350.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiri G., Nahari D., Finkelstein Y., Le S. Y., Elroy-Stein O., Levi B. Z. Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription. Oncogene. 1998 Jul 16;17(2):227–236. doi: 10.1038/sj.onc.1202019. [DOI] [PubMed] [Google Scholar]
  2. Carmeliet P., Ng Y. S., Nuyens D., Theilmeier G., Brusselmans K., Cornelissen I., Ehler E., Kakkar V. V., Stalmans I., Mattot V. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med. 1999 May;5(5):495–502. doi: 10.1038/8379. [DOI] [PubMed] [Google Scholar]
  3. Davis S., Aldrich T. H., Jones P. F., Acheson A., Compton D. L., Jain V., Ryan T. E., Bruno J., Radziejewski C., Maisonpierre P. C. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell. 1996 Dec 27;87(7):1161–1169. doi: 10.1016/s0092-8674(00)81812-7. [DOI] [PubMed] [Google Scholar]
  4. Esser S., Lampugnani M. G., Corada M., Dejana E., Risau W. Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci. 1998 Jul;111(Pt 13):1853–1865. doi: 10.1242/jcs.111.13.1853. [DOI] [PubMed] [Google Scholar]
  5. Ferrara N., Henzel W. J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989 Jun 15;161(2):851–858. doi: 10.1016/0006-291x(89)92678-8. [DOI] [PubMed] [Google Scholar]
  6. Ferrara N. Molecular and biological properties of vascular endothelial growth factor. J Mol Med (Berl) 1999 Jul;77(7):527–543. doi: 10.1007/s001099900019. [DOI] [PubMed] [Google Scholar]
  7. Gordon J. D., Mesiano S., Zaloudek C. J., Jaffe R. B. Vascular endothelial growth factor localization in human ovary and fallopian tubes: possible role in reproductive function and ovarian cyst formation. J Clin Endocrinol Metab. 1996 Jan;81(1):353–359. doi: 10.1210/jcem.81.1.8550777. [DOI] [PubMed] [Google Scholar]
  8. Holash J., Maisonpierre P. C., Compton D., Boland P., Alexander C. R., Zagzag D., Yancopoulos G. D., Wiegand S. J. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999 Jun 18;284(5422):1994–1998. doi: 10.1126/science.284.5422.1994. [DOI] [PubMed] [Google Scholar]
  9. Houck K. A., Ferrara N., Winer J., Cachianes G., Li B., Leung D. W. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol. 1991 Dec;5(12):1806–1814. doi: 10.1210/mend-5-12-1806. [DOI] [PubMed] [Google Scholar]
  10. Huez I., Créancier L., Audigier S., Gensac M. C., Prats A. C., Prats H. Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol Cell Biol. 1998 Nov;18(11):6178–6190. doi: 10.1128/mcb.18.11.6178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Joukov V., Sorsa T., Kumar V., Jeltsch M., Claesson-Welsh L., Cao Y., Saksela O., Kalkkinen N., Alitalo K. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 1997 Jul 1;16(13):3898–3911. doi: 10.1093/emboj/16.13.3898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Keck P. J., Hauser S. D., Krivi G., Sanzo K., Warren T., Feder J., Connolly D. T. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science. 1989 Dec 8;246(4935):1309–1312. doi: 10.1126/science.2479987. [DOI] [PubMed] [Google Scholar]
  13. Kozak M. Initiation of translation in prokaryotes and eukaryotes. Gene. 1999 Jul 8;234(2):187–208. doi: 10.1016/s0378-1119(99)00210-3. [DOI] [PubMed] [Google Scholar]
  14. Leung D. W., Cachianes G., Kuang W. J., Goeddel D. V., Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989 Dec 8;246(4935):1306–1309. doi: 10.1126/science.2479986. [DOI] [PubMed] [Google Scholar]
  15. Levy A. P., Levy N. S., Wegner S., Goldberg M. A. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem. 1995 Jun 2;270(22):13333–13340. doi: 10.1074/jbc.270.22.13333. [DOI] [PubMed] [Google Scholar]
  16. Lewalle J. M., Bajou K., Desreux J., Mareel M., Dejana E., Noël A., Foidart J. M. Alteration of interendothelial adherens junctions following tumor cell-endothelial cell interaction in vitro. Exp Cell Res. 1997 Dec 15;237(2):347–356. doi: 10.1006/excr.1997.3799. [DOI] [PubMed] [Google Scholar]
  17. Mathews D. H., Sabina J., Zuker M., Turner D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999 May 21;288(5):911–940. doi: 10.1006/jmbi.1999.2700. [DOI] [PubMed] [Google Scholar]
  18. Mehdi H., Ono E., Gupta K. C. Initiation of translation at CUG, GUG, and ACG codons in mammalian cells. Gene. 1990 Jul 16;91(2):173–178. doi: 10.1016/0378-1119(90)90085-6. [DOI] [PubMed] [Google Scholar]
  19. Miller D. L., Dibbens J. A., Damert A., Risau W., Vadas M. A., Goodall G. J. The vascular endothelial growth factor mRNA contains an internal ribosome entry site. FEBS Lett. 1998 Sep 4;434(3):417–420. doi: 10.1016/s0014-5793(98)01025-4. [DOI] [PubMed] [Google Scholar]
  20. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997 Jan;10(1):1–6. doi: 10.1093/protein/10.1.1. [DOI] [PubMed] [Google Scholar]
  21. Oh H., Takagi H., Suzuma K., Otani A., Matsumura M., Honda Y. Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem. 1999 May 28;274(22):15732–15739. doi: 10.1074/jbc.274.22.15732. [DOI] [PubMed] [Google Scholar]
  22. Ostman A., Thyberg J., Westermark B., Heldin C. H. PDGF-AA and PDGF-BB biosynthesis: proprotein processing in the Golgi complex and lysosomal degradation of PDGF-BB retained intracellularly. J Cell Biol. 1992 Aug;118(3):509–519. doi: 10.1083/jcb.118.3.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Park J. E., Keller G. A., Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell. 1993 Dec;4(12):1317–1326. doi: 10.1091/mbc.4.12.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pötgens A. J., Lubsen N. H., van Altena M. C., Vermeulen R., Bakker A., Schoenmakers J. G., Ruiter D. J., de Waal R. M. Covalent dimerization of vascular permeability factor/vascular endothelial growth factor is essential for its biological activity. Evidence from Cys to Ser mutations. J Biol Chem. 1994 Dec 30;269(52):32879–32885. [PubMed] [Google Scholar]
  25. Shifren J. L., Doldi N., Ferrara N., Mesiano S., Jaffe R. B. In the human fetus, vascular endothelial growth factor is expressed in epithelial cells and myocytes, but not vascular endothelium: implications for mode of action. J Clin Endocrinol Metab. 1994 Jul;79(1):316–322. doi: 10.1210/jcem.79.1.8027247. [DOI] [PubMed] [Google Scholar]
  26. Shima D. T., Kuroki M., Deutsch U., Ng Y. S., Adamis A. P., D'Amore P. A. The mouse gene for vascular endothelial growth factor. Genomic structure, definition of the transcriptional unit, and characterization of transcriptional and post-transcriptional regulatory sequences. J Biol Chem. 1996 Feb 16;271(7):3877–3883. doi: 10.1074/jbc.271.7.3877. [DOI] [PubMed] [Google Scholar]
  27. Stacker S. A., Stenvers K., Caesar C., Vitali A., Domagala T., Nice E., Roufail S., Simpson R. J., Moritz R., Karpanen T. Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers. J Biol Chem. 1999 Nov 5;274(45):32127–32136. doi: 10.1074/jbc.274.45.32127. [DOI] [PubMed] [Google Scholar]
  28. Stein I., Itin A., Einat P., Skaliter R., Grossman Z., Keshet E. Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol. 1998 Jun;18(6):3112–3119. doi: 10.1128/mcb.18.6.3112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tischer E., Mitchell R., Hartman T., Silva M., Gospodarowicz D., Fiddes J. C., Abraham J. A. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem. 1991 Jun 25;266(18):11947–11954. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES