Abstract
Salivary agglutinin is a 300-400 kDa salivary glycoprotein that binds to antigen B polypeptides of oral streptococci, thereby playing a role in their colonization and the development of caries. A mass spectrum was recorded of a trypsin digest of agglutinin. A dominant peak of 1460 Da was sequenced by quadrupole time-of-flight (Q-TOF) tandem MS. The sequence showed 100% identity with part of the scavenger receptor cysteine-rich ('SRCR') domain found in gp-340/DMBT1 (deleted in malignant brain tumours-1). The mass spectrum revealed 11 peaks with an identical mass as a computer-simulated trypsin digest of gp-340. gp-340 is a 340 kDa glycoprotein isolated from bronchoalveolar lavage fluid that binds specifically to lung surfactant protein-D. DMBT1 is a candidate tumour suppressor gene. A search in the human genome revealed only one copy of this gene. The molecular mass, as judged from SDS/PAGE and the amino acid composition of agglutinin, was found to be nearly identical with that of gp-340. It was shown by Western blotting that monoclonal antibodies against gp-340 reacted with salivary agglutinin, and monoclonals against agglutinin reacted with gp-340. It was demonstrated that gp-340 and agglutinin bound in a similar way to Streptococcus mutans and surfactant protein-D. Histochemically, the distribution of gp-340 in the submandibular salivary glands was identical with the agglutinin distribution, as shown in a previous paper [Takano, Bogert, Malamud, Lally and Hand (1991) Anat. Rec. 230, 307-318]. We conclude that agglutinin is identical with gp-340, and that this molecule interacts with S. mutans and surfactant protein-D.
Full Text
The Full Text of this article is available as a PDF (207.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armstrong E. A., Ziola B., Habbick B. F., Komiyama K. Role of cations and IgA in saliva-mediated aggregation of Pseudomonas aeruginosa in cystic fibrosis patients. J Oral Pathol Med. 1993 May;22(5):207–213. doi: 10.1111/j.1600-0714.1993.tb01058.x. [DOI] [PubMed] [Google Scholar]
- Boackle R. J., Connor M. H., Vesely J. High molecular weight non-immunoglobulin salivary agglutinins (NIA) bind C1Q globular heads and have the potential to activate the first complement component. Mol Immunol. 1993 Feb;30(3):309–319. doi: 10.1016/0161-5890(93)90059-k. [DOI] [PubMed] [Google Scholar]
- Carlen A., Olsson J., Borjesson A. C. Saliva-mediated binding in vitro and prevalence in vivo of Streptococcus mutans. Arch Oral Biol. 1996 Jan;41(1):35–39. doi: 10.1016/0003-9969(95)00099-2. [DOI] [PubMed] [Google Scholar]
- Carlén A., Bratt P., Stenudd C., Olsson J., Strömberg N. Agglutinin and acidic proline-rich protein receptor patterns may modulate bacterial adherence and colonization on tooth surfaces. J Dent Res. 1998 Jan;77(1):81–90. doi: 10.1177/00220345980770011301. [DOI] [PubMed] [Google Scholar]
- Carlén A., Olsson J. Monoclonal antibodies against a high-molecular-weight agglutinin block adherence to experimental pellicles on hydroxyapatite and aggregation of Streptococcus mutans. J Dent Res. 1995 Apr;74(4):1040–1047. doi: 10.1177/00220345950740040301. [DOI] [PubMed] [Google Scholar]
- Cheng H., Bjerknes M., Chen H. CRP-ductin: a gene expressed in intestinal crypts and in pancreatic and hepatic ducts. Anat Rec. 1996 Mar;244(3):327–343. doi: 10.1002/(SICI)1097-0185(199603)244:3<327::AID-AR5>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
- Demuth D. R., Golub E. E., Malamud D. Streptococcal-host interactions. Structural and functional analysis of a Streptococcus sanguis receptor for a human salivary glycoprotein. J Biol Chem. 1990 May 5;265(13):7120–7126. [PubMed] [Google Scholar]
- Demuth D. R., Lammey M. S., Huck M., Lally E. T., Malamud D. Comparison of Streptococcus mutans and Streptococcus sanguis receptors for human salivary agglutinin. Microb Pathog. 1990 Sep;9(3):199–211. doi: 10.1016/0882-4010(90)90022-i. [DOI] [PubMed] [Google Scholar]
- Ericson T., Rundegren J. Characterization of a salivary agglutinin reacting with a serotype c strain of Streptococcus mutans. Eur J Biochem. 1983 Jun 15;133(2):255–261. doi: 10.1111/j.1432-1033.1983.tb07456.x. [DOI] [PubMed] [Google Scholar]
- Hartshorn K. L., Crouch E., White M. R., Colamussi M. L., Kakkanatt A., Tauber B., Shepherd V., Sastry K. N. Pulmonary surfactant proteins A and D enhance neutrophil uptake of bacteria. Am J Physiol. 1998 Jun;274(6 Pt 1):L958–L969. doi: 10.1152/ajplung.1998.274.6.L958. [DOI] [PubMed] [Google Scholar]
- Holmskov U., Lawson P., Teisner B., Tornoe I., Willis A. C., Morgan C., Koch C., Reid K. B. Isolation and characterization of a new member of the scavenger receptor superfamily, glycoprotein-340 (gp-340), as a lung surfactant protein-D binding molecule. J Biol Chem. 1997 May 23;272(21):13743–13749. doi: 10.1074/jbc.272.21.13743. [DOI] [PubMed] [Google Scholar]
- Holmskov U., Mollenhauer J., Madsen J., Vitved L., Gronlund J., Tornoe I., Kliem A., Reid K. B., Poustka A., Skjodt K. Cloning of gp-340, a putative opsonin receptor for lung surfactant protein D. Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10794–10799. doi: 10.1073/pnas.96.19.10794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kishimoto E., Hay D. I., Kent R. Polymorphism of submandibular-sublingual salivary proteins which promote adhesion of Streptococcus mutans serotype-c strains to hydroxyapatite. J Dent Res. 1990 Nov;69(11):1741–1745. doi: 10.1177/00220345900690110601. [DOI] [PubMed] [Google Scholar]
- Lamont R. J., Demuth D. R., Davis C. A., Malamud D., Rosan B. Salivary-agglutinin-mediated adherence of Streptococcus mutans to early plaque bacteria. Infect Immun. 1991 Oct;59(10):3446–3450. doi: 10.1128/iai.59.10.3446-3450.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li X. J., Snyder S. H. Molecular cloning of Ebnerin, a von Ebner's gland protein associated with taste buds. J Biol Chem. 1995 Jul 28;270(30):17674–17679. doi: 10.1074/jbc.270.30.17674. [DOI] [PubMed] [Google Scholar]
- Ligtenberg A. J., Veerman E. C., Nieuw Amerongen A. V. A role for Lewis a antigens on salivary agglutinin in binding to Streptococcus mutans. Antonie Van Leeuwenhoek. 2000 Jan;77(1):21–30. doi: 10.1023/a:1002054810170. [DOI] [PubMed] [Google Scholar]
- Madan T., Eggleton P., Kishore U., Strong P., Aggrawal S. S., Sarma P. U., Reid K. B. Binding of pulmonary surfactant proteins A and D to Aspergillus fumigatus conidia enhances phagocytosis and killing by human neutrophils and alveolar macrophages. Infect Immun. 1997 Aug;65(8):3171–3179. doi: 10.1128/iai.65.8.3171-3179.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madsen J., Kliem A., Tornoe I., Skjodt K., Koch C., Holmskov U. Localization of lung surfactant protein D on mucosal surfaces in human tissues. J Immunol. 2000 Jun 1;164(11):5866–5870. doi: 10.4049/jimmunol.164.11.5866. [DOI] [PubMed] [Google Scholar]
- Matsushita F., Miyawaki A., Mikoshiba K. Vomeroglandin/CRP-Ductin is strongly expressed in the glands associated with the mouse vomeronasal organ: identification and characterization of mouse vomeroglandin. Biochem Biophys Res Commun. 2000 Feb 16;268(2):275–281. doi: 10.1006/bbrc.2000.2104. [DOI] [PubMed] [Google Scholar]
- Mollenhauer J., Herbertz S., Holmskov U., Tolnay M., Krebs I., Merlo A., Schrøder H. D., Maier D., Breitling F., Wiemann S. DMBT1 encodes a protein involved in the immune defense and in epithelial differentiation and is highly unstable in cancer. Cancer Res. 2000 Mar 15;60(6):1704–1710. [PubMed] [Google Scholar]
- Mollenhauer J., Holmskov U., Wiemann S., Krebs I., Herbertz S., Madsen J., Kioschis P., Coy J. F., Poustka A. The genomic structure of the DMBT1 gene: evidence for a region with susceptibility to genomic instability. Oncogene. 1999 Nov 4;18(46):6233–6240. doi: 10.1038/sj.onc.1203071. [DOI] [PubMed] [Google Scholar]
- Mollenhauer J., Wiemann S., Scheurlen W., Korn B., Hayashi Y., Wilgenbus K. K., von Deimling A., Poustka A. DMBT1, a new member of the SRCR superfamily, on chromosome 10q25.3-26.1 is deleted in malignant brain tumours. Nat Genet. 1997 Sep;17(1):32–39. doi: 10.1038/ng0997-32. [DOI] [PubMed] [Google Scholar]
- Oho T., Yu H., Yamashita Y., Koga T. Binding of salivary glycoprotein-secretory immunoglobulin A complex to the surface protein antigen of Streptococcus mutans. Infect Immun. 1998 Jan;66(1):115–121. doi: 10.1128/iai.66.1.115-121.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prakobphol A., Xu F., Hoang V. M., Larsson T., Bergstrom J., Johansson I., Frängsmyr L., Holmskov U., Leffler H., Nilsson C. Salivary agglutinin, which binds Streptococcus mutans and Helicobacter pylori, is the lung scavenger receptor cysteine-rich protein gp-340. J Biol Chem. 2000 Dec 22;275(51):39860–39866. doi: 10.1074/jbc.M006928200. [DOI] [PubMed] [Google Scholar]
- Rundegren J., Arnold R. R. Differentiation and interaction of secretory immunoglobulin A and a calcium-dependent parotid agglutinin for several bacterial strains. Infect Immun. 1987 Feb;55(2):288–292. doi: 10.1128/iai.55.2.288-292.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rundegren J. Calcium-dependent salivary agglutinin with reactivity to various oral bacterial species. Infect Immun. 1986 Jul;53(1):173–178. doi: 10.1128/iai.53.1.173-178.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strong P., Kishore U., Morgan C., Lopez Bernal A., Singh M., Reid K. B. A novel method of purifying lung surfactant proteins A and D from the lung lavage of alveolar proteinosis patients and from pooled amniotic fluid. J Immunol Methods. 1998 Nov 1;220(1-2):139–149. doi: 10.1016/s0022-1759(98)00160-4. [DOI] [PubMed] [Google Scholar]
- Takano K., Bogert M., Malamud D., Lally E., Hand A. R. Differential distribution of salivary agglutinin and amylase in the Golgi apparatus and secretory granules of human salivary gland acinar cells. Anat Rec. 1991 Jul;230(3):307–318. doi: 10.1002/ar.1092300303. [DOI] [PubMed] [Google Scholar]