Abstract
The N-linked glycans on transferrin and alpha(1)-antitrypsin from patients with congenital disorders of glycosylation type I have increased fucosylation and branching relative to normal controls. The elevated levels of monofucosylated biantennary glycans are probably due to increased alpha-(1-->6) fucosylation. The presence of bi- and trifucosylated triantennary and tetra-antennary glycans indicated that peripheral alpha-(1-->3), as well as core alpha-(1-->6), fucosylation is increased. Altered processing was observed on both the fully and underglycosylated glycoforms.
Full Text
The Full Text of this article is available as a PDF (183.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aebi M., Hennet T. Congenital disorders of glycosylation: genetic model systems lead the way. Trends Cell Biol. 2001 Mar;11(3):136–141. doi: 10.1016/s0962-8924(01)01925-0. [DOI] [PubMed] [Google Scholar]
- Beyer T. A., Rearick J. I., Paulson J. C., Prieels J. P., Sadler J. E., Hill R. L. Biosynthesis of mammalian glycoproteins. Glycosylation pathways in the synthesis of the nonreducing terminal sequences. J Biol Chem. 1979 Dec 25;254(24):12531–12534. [PubMed] [Google Scholar]
- Charlwood J., Clayton P., Keir G., Mian N., Winchester B. Defective galactosylation of serum transferrin in galactosemia. Glycobiology. 1998 Apr;8(4):351–357. doi: 10.1093/glycob/8.4.351. [DOI] [PubMed] [Google Scholar]
- De Graaf T. W., Van der Stelt M. E., Anbergen M. G., van Dijk W. Inflammation-induced expression of sialyl Lewis X-containing glycan structures on alpha 1-acid glycoprotein (orosomucoid) in human sera. J Exp Med. 1993 Mar 1;177(3):657–666. doi: 10.1084/jem.177.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dorland L., Haverkamp J., Schut B. L., Vliegenthart J. F. The structure of the asialo-carbohydrate units of human serotransferrin as proven by 360 MHz proton magnetic resonance spectroscopy. FEBS Lett. 1977 May 1;77(1):15–20. doi: 10.1016/0014-5793(77)80183-x. [DOI] [PubMed] [Google Scholar]
- Fagerhol M. K., Laurell C. B. The polymorphism of "prealbumins" and alpha-1-antitrypsin in human sera. Clin Chim Acta. 1967 May;16(2):199–203. doi: 10.1016/0009-8981(67)90181-7. [DOI] [PubMed] [Google Scholar]
- Hochstrasser D. F., Harrington M. G., Hochstrasser A. C., Miller M. J., Merril C. R. Methods for increasing the resolution of two-dimensional protein electrophoresis. Anal Biochem. 1988 Sep;173(2):424–435. doi: 10.1016/0003-2697(88)90209-6. [DOI] [PubMed] [Google Scholar]
- Hochstrasser D. F., Merril C. R. 'Catalysts' for polyacrylamide gel polymerization and detection of proteins by silver staining. Appl Theor Electrophor. 1988;1(1):35–40. [PubMed] [Google Scholar]
- Hochstrasser D. F., Patchornik A., Merril C. R. Development of polyacrylamide gels that improve the separation of proteins and their detection by silver staining. Anal Biochem. 1988 Sep;173(2):412–423. doi: 10.1016/0003-2697(88)90208-4. [DOI] [PubMed] [Google Scholar]
- Hoffmann A., Nimtz M., Getzlaff R., Conradt H. S. 'Brain-type' N-glycosylation of asialo-transferrin from human cerebrospinal fluid. FEBS Lett. 1995 Feb 13;359(2-3):164–168. doi: 10.1016/0014-5793(95)00034-7. [DOI] [PubMed] [Google Scholar]
- Imtiaz F., Worthington V., Champion M., Beesley C., Charlwood J., Clayton P., Keir G., Mian N., Winchester B. Genotypes and phenotypes of patients in the UK with carbohydrate-deficient glycoprotein syndrome type 1. J Inherit Metab Dis. 2000 Mar;23(2):162–174. doi: 10.1023/a:1005669900330. [DOI] [PubMed] [Google Scholar]
- Jeppsson J. O., Lilja H., Johansson M. Isolation and characterization of two minor fractions of alpha 1-antitrypsin by high-performance liquid chromatographic chromatofocusing. J Chromatogr. 1985 Jun 26;327:173–177. doi: 10.1016/s0021-9673(01)81646-0. [DOI] [PubMed] [Google Scholar]
- Küster B., Hunter A. P., Wheeler S. F., Dwek R. A., Harvey D. J. Structural determination of N-linked carbohydrates by matrix-assisted laser desorption/ionization-mass spectrometry following enzymatic release within sodium dodecyl sulphate-polyacrylamide electrophoresis gels: application to species-specific glycosylation of alpha1-acid glycoprotein. Electrophoresis. 1998 Aug;19(11):1950–1959. doi: 10.1002/elps.1150191113. [DOI] [PubMed] [Google Scholar]
- Lovegrove J. U., Jeremiah S., Gillett G. T., Temple I. K., Povey S., Whitehouse D. B. A new alpha 1-antitrypsin mutation, Thr-Met 85, (PI Zbristol) associated with novel electrophoretic properties. Ann Hum Genet. 1997 Sep;61(Pt 5):385–391. doi: 10.1046/j.1469-1809.1997.6150385.x. [DOI] [PubMed] [Google Scholar]
- Mackiewicz A., Mackiewicz K. Glycoforms of serum alpha 1-acid glycoprotein as markers of inflammation and cancer. Glycoconj J. 1995 Jun;12(3):241–247. doi: 10.1007/BF00731326. [DOI] [PubMed] [Google Scholar]
- Mills P. B., Mills K., Johnson A. W., Clayton P. T., Winchester B. G. Analysis by matrix assisted laser desorption/ionisation-time of flight mass spectrometry of the post-translational modifications of alpha 1-antitrypsin isoforms separated by two-dimensional polyacrylamide gel electrophoresis. Proteomics. 2001 Jun;1(6):778–786. doi: 10.1002/1615-9861(200106)1:6<778::AID-PROT778>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
- Papac D. I., Wong A., Jones A. J. Analysis of acidic oligosaccharides and glycopeptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem. 1996 Sep 15;68(18):3215–3223. doi: 10.1021/ac960324z. [DOI] [PubMed] [Google Scholar]
- Saitoh A., Aoyagi Y., Asakura H. Structural analysis on the sugar chains of human alpha 1-antitrypsin: presence of fucosylated biantennary glycan in hepatocellular carcinoma. Arch Biochem Biophys. 1993 Jun;303(2):281–287. doi: 10.1006/abbi.1993.1284. [DOI] [PubMed] [Google Scholar]
- Shevchenko A., Wilm M., Vorm O., Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996 Mar 1;68(5):850–858. doi: 10.1021/ac950914h. [DOI] [PubMed] [Google Scholar]
- Spik G., Debruyne V., Montreuil J., van Halbeek H., Vliegenthart J. F. Primary structure of two sialylated triantennary glycans from human serotransferrin. FEBS Lett. 1985 Apr 8;183(1):65–69. doi: 10.1016/0014-5793(85)80955-8. [DOI] [PubMed] [Google Scholar]
- Staudacher E., Altmann F., Wilson I. B., März L. Fucose in N-glycans: from plant to man. Biochim Biophys Acta. 1999 Dec 6;1473(1):216–236. doi: 10.1016/s0304-4165(99)00181-6. [DOI] [PubMed] [Google Scholar]
- Van Dijk W., Koeleman C., Van het Hof B., Poland D., Jakobs C., Jaeken J. Increased alpha3-fucosylation of alpha(1)-acid glycoprotein in patients with congenital disorder of glycosylation type IA (CDG-Ia). FEBS Lett. 2001 Apr 13;494(3):232–235. doi: 10.1016/s0014-5793(01)02349-3. [DOI] [PubMed] [Google Scholar]
- Yamashita K., Ideo H., Ohkura T., Fukushima K., Yuasa I., Ohno K., Takeshita K. Sugar chains of serum transferrin from patients with carbohydrate deficient glycoprotein syndrome. Evidence of asparagine-N-linked oligosaccharide transfer deficiency. J Biol Chem. 1993 Mar 15;268(8):5783–5789. [PubMed] [Google Scholar]
- van Dijk W., Havenaar E. C., Brinkman-van der Linden E. C. Alpha 1-acid glycoprotein (orosomucoid): pathophysiological changes in glycosylation in relation to its function. Glycoconj J. 1995 Jun;12(3):227–233. doi: 10.1007/BF00731324. [DOI] [PubMed] [Google Scholar]
- van Rooijen J. J., Jeschke U., Kamerling J. P., Vliegenthart J. F. Expression of N-linked sialyl Le(x) determinants and O-glycans in the carbohydrate moiety of human amniotic fluid transferrin during pregnancy. Glycobiology. 1998 Nov;8(11):1053–1064. doi: 10.1093/glycob/8.11.1053. [DOI] [PubMed] [Google Scholar]