Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Oct 15;359(Pt 2):273–284. doi: 10.1042/0264-6021:3590273

Promoter I of the ovine acetyl-CoA carboxylase-alpha gene: an E-box motif at -114 in the proximal promoter binds upstream stimulatory factor (USF)-1 and USF-2 and acts as an insulin-response sequence in differentiating adipocytes.

M T Travers 1, A J Vallance 1, H T Gourlay 1, C A Gill 1, I Klein 1, C B Bottema 1, M C Barber 1
PMCID: PMC1222145  PMID: 11583573

Abstract

Acetyl-CoA carboxylase-alpha (ACC-alpha) plays a central role in co-ordinating de novo fatty acid synthesis in animal tissues. We have characterized the regulatory region of the ovine ACC-alpha gene. Three promoters, PI, PII and PIII, are dispersed throughout 50 kb of genomic DNA. Expression from PI is limited to adipose tissue and liver. Sequence comparison of the proximal promoters of ovine and mouse PIs demonstrates high nucleotide identity and that they are characterized by a TATA box at -29, C/EBP (CCAAT enhancer-binding protein)-binding motifs and multiple E-box motifs. A 4.3 kb ovine PI-luciferase reporter construct is insulin-responsive when transfected into differentiated ovine adipocytes, whereas when this construct is transfected into ovine preadipocytes and HepG2 cells the construct is inactive and is not inducible by insulin. By contrast, transfection of a construct corresponding to 132 bp of the proximal promoter linked to a luciferase reporter is active and inducible by insulin in all three cell systems. Insulin signalling to the -132 bp construct in differentiated ovine adipocytes involves, in part, an E-box motif at -114. Upstream stimulatory factor (USF)-1 and USF-2, but not sterol regulatory element-binding protein 1 (SREBP-1), are major components of protein complexes that bind this E-box motif. Activation of the 4.3 kb PI construct in differentiated ovine adipocytes is associated with endogenous expression of PI transcripts throughout differentiation; PI transcripts are not detectable by RNase-protection assay in ovine preadipocytes, HepG2 cells or 3T3-F442A adipocytes. These data indicate the presence of repressor motifs in PI that are required to be de-repressed during adipocyte differentiation to allow induction of the promoter by insulin.

Full Text

The Full Text of this article is available as a PDF (330.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abu-Elheiga L., Almarza-Ortega D. B., Baldini A., Wakil S. J. Human acetyl-CoA carboxylase 2. Molecular cloning, characterization, chromosomal mapping, and evidence for two isoforms. J Biol Chem. 1997 Apr 18;272(16):10669–10677. doi: 10.1074/jbc.272.16.10669. [DOI] [PubMed] [Google Scholar]
  2. Abu-Elheiga L., Jayakumar A., Baldini A., Chirala S. S., Wakil S. J. Human acetyl-CoA carboxylase: characterization, molecular cloning, and evidence for two isoforms. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):4011–4015. doi: 10.1073/pnas.92.9.4011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barber M. C., Travers M. T. Cloning and characterisation of multiple acetyl-CoA carboxylase transcripts in ovine adipose tissue. Gene. 1995 Mar 10;154(2):271–275. doi: 10.1016/0378-1119(94)00871-o. [DOI] [PubMed] [Google Scholar]
  4. Barber M. C., Travers M. T. Elucidation of a promoter activity that directs the expression of acetyl-CoA carboxylase alpha with an alternative N-terminus in a tissue-restricted fashion. Biochem J. 1998 Jul 1;333(Pt 1):17–25. doi: 10.1042/bj3330017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Casado M., Vallet V. S., Kahn A., Vaulont S. Essential role in vivo of upstream stimulatory factors for a normal dietary response of the fatty acid synthase gene in the liver. J Biol Chem. 1999 Jan 22;274(4):2009–2013. doi: 10.1074/jbc.274.4.2009. [DOI] [PubMed] [Google Scholar]
  6. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  7. Diaz Guerra M. J., Bergot M. O., Martinez A., Cuif M. H., Kahn A., Raymondjean M. Functional characterization of the L-type pyruvate kinase gene glucose response complex. Mol Cell Biol. 1993 Dec;13(12):7725–7733. doi: 10.1128/mcb.13.12.7725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  9. Gill C. A., Davis S. K., Taylor J. F., Cockett N. E., Bottema C. D. Construction and characterization of an ovine bacterial artificial chromosome library. Mamm Genome. 1999 Nov;10(11):1108–1111. doi: 10.1007/s003359901172. [DOI] [PubMed] [Google Scholar]
  10. Ha J., Daniel S., Broyles S. S., Kim K. H. Critical phosphorylation sites for acetyl-CoA carboxylase activity. J Biol Chem. 1994 Sep 2;269(35):22162–22168. [PubMed] [Google Scholar]
  11. Ha J., Daniel S., Kong I. S., Park C. K., Tae H. J., Kim K. H. Cloning of human acetyl-CoA carboxylase cDNA. Eur J Biochem. 1994 Jan 15;219(1-2):297–306. doi: 10.1111/j.1432-1033.1994.tb19941.x. [DOI] [PubMed] [Google Scholar]
  12. Ha J., Lee J. K., Kim K. S., Witters L. A., Kim K. H. Cloning of human acetyl-CoA carboxylase-beta and its unique features. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11466–11470. doi: 10.1073/pnas.93.21.11466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haystead T. A., Campbell D. G., Hardie D. G. Analysis of sites phosphorylated on acetyl-CoA carboxylase in response to insulin in isolated adipocytes. Comparison with sites phosphorylated by casein kinase-2 and the calmodulin-dependent multiprotein kinase. Eur J Biochem. 1988 Aug 1;175(2):347–354. doi: 10.1111/j.1432-1033.1988.tb14203.x. [DOI] [PubMed] [Google Scholar]
  14. Haystead T. A., Hardie D. G. Insulin and phorbol ester stimulate phosphorylation of acetyl-CoA carboxylase at similar sites in isolated adipocytes. Lack of correspondence with sites phosphorylated on the purified enzyme by protein kinase C. Eur J Biochem. 1988 Aug 1;175(2):339–345. doi: 10.1111/j.1432-1033.1988.tb14202.x. [DOI] [PubMed] [Google Scholar]
  15. Kim J. B., Sarraf P., Wright M., Yao K. M., Mueller E., Solanes G., Lowell B. B., Spiegelman B. M. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest. 1998 Jan 1;101(1):1–9. doi: 10.1172/JCI1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kim K. H., López-Casillas F., Bai D. H., Luo X., Pape M. E. Role of reversible phosphorylation of acetyl-CoA carboxylase in long-chain fatty acid synthesis. FASEB J. 1989 Sep;3(11):2250–2256. doi: 10.1096/fasebj.3.11.2570725. [DOI] [PubMed] [Google Scholar]
  17. Kim K. H., Tae H. J. Pattern and regulation of acetyl-CoA carboxylase gene expression. J Nutr. 1994 Aug;124(8 Suppl):1273S–1283S. doi: 10.1093/jn/124.suppl_8.1273S. [DOI] [PubMed] [Google Scholar]
  18. Kim T. S., Leahy P., Freake H. C. Promoter usage determines tissue specific responsiveness of the rat acetyl-CoA carboxylase gene. Biochem Biophys Res Commun. 1996 Aug 14;225(2):647–653. doi: 10.1006/bbrc.1996.1224. [DOI] [PubMed] [Google Scholar]
  19. Koo S. H., Towle H. C. Glucose regulation of mouse S(14) gene expression in hepatocytes. Involvement of a novel transcription factor complex. J Biol Chem. 2000 Feb 18;275(7):5200–5207. doi: 10.1074/jbc.275.7.5200. [DOI] [PubMed] [Google Scholar]
  20. Lane M. D., Tang Q. Q., Jiang M. S. Role of the CCAAT enhancer binding proteins (C/EBPs) in adipocyte differentiation. Biochem Biophys Res Commun. 1999 Dec 29;266(3):677–683. doi: 10.1006/bbrc.1999.1885. [DOI] [PubMed] [Google Scholar]
  21. Latasa M. J., Moon Y. S., Kim K. H., Sul H. S. Nutritional regulation of the fatty acid synthase promoter in vivo: sterol regulatory element binding protein functions through an upstream region containing a sterol regulatory element. Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10619–10624. doi: 10.1073/pnas.180306597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lefrançois-Martinez A. M., Martinez A., Antoine B., Raymondjean M., Kahn A. Upstream stimulatory factor proteins are major components of the glucose response complex of the L-type pyruvate kinase gene promoter. J Biol Chem. 1995 Feb 10;270(6):2640–2643. doi: 10.1074/jbc.270.6.2640. [DOI] [PubMed] [Google Scholar]
  23. Luo X. C., Park K., Lopez-Casillas F., Kim K. H. Structural features of the acetyl-CoA carboxylase gene: mechanisms for the generation of mRNAs with 5' end heterogeneity. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4042–4046. doi: 10.1073/pnas.86.11.4042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. López-Casillas F., Luo X. C., Kong I. S., Kim K. H. Characterization of different forms of rat mammary gland acetyl-coenzyme A carboxylase mRNA: analysis of heterogeneity in the 5' end. Gene. 1989 Nov 30;83(2):311–319. doi: 10.1016/0378-1119(89)90117-0. [DOI] [PubMed] [Google Scholar]
  25. López-Casillas F., Ponce-Castañeda M. V., Kim K. H. In vivo regulation of the activity of the two promoters of the rat acetyl coenzyme-A carboxylase gene. Endocrinology. 1991 Aug;129(2):1049–1058. doi: 10.1210/endo-129-2-1049. [DOI] [PubMed] [Google Scholar]
  26. Moon Y. S., Latasa M. J., Kim K. H., Wang D., Sul H. S. Two 5'-regions are required for nutritional and insulin regulation of the fatty-acid synthase promoter in transgenic mice. J Biol Chem. 2000 Apr 7;275(14):10121–10127. doi: 10.1074/jbc.275.14.10121. [DOI] [PubMed] [Google Scholar]
  27. Munday M. R., Campbell D. G., Carling D., Hardie D. G. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur J Biochem. 1988 Aug 1;175(2):331–338. doi: 10.1111/j.1432-1033.1988.tb14201.x. [DOI] [PubMed] [Google Scholar]
  28. O'Callaghan B. L., Koo S. H., Wu Y., Freake H. C., Towle H. C. Glucose regulation of the acetyl-CoA carboxylase promoter PI in rat hepatocytes. J Biol Chem. 2001 Feb 28;276(19):16033–16039. doi: 10.1074/jbc.M101557200. [DOI] [PubMed] [Google Scholar]
  29. Pape M. E., Lopez-Casillas F., Kim K. H. Physiological regulation of acetyl-CoA carboxylase gene expression: effects of diet, diabetes, and lactation on acetyl-CoA carboxylase mRNA. Arch Biochem Biophys. 1988 Nov 15;267(1):104–109. doi: 10.1016/0003-9861(88)90013-6. [DOI] [PubMed] [Google Scholar]
  30. Paulauskis J. D., Sul H. S. Cloning and expression of mouse fatty acid synthase and other specific mRNAs. Developmental and hormonal regulation in 3T3-L1 cells. J Biol Chem. 1988 May 25;263(15):7049–7054. [PubMed] [Google Scholar]
  31. Ponce-Castañeda M. V., López-Casillas F., Kim K. H. Acetyl-coenzyme A carboxylase messenger ribonucleic acid metabolism in liver, adipose tissues, and mammary glands during pregnancy and lactation. J Dairy Sci. 1991 Nov;74(11):4013–4021. doi: 10.3168/jds.S0022-0302(91)78596-2. [DOI] [PubMed] [Google Scholar]
  32. Rodriguez I. R., Chader G. J. A novel method for the isolation of tissue-specific genes. Nucleic Acids Res. 1992 Jul 11;20(13):3528–3528. doi: 10.1093/nar/20.13.3528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shih H. M., Liu Z., Towle H. C. Two CACGTG motifs with proper spacing dictate the carbohydrate regulation of hepatic gene transcription. J Biol Chem. 1995 Sep 15;270(37):21991–21997. doi: 10.1074/jbc.270.37.21991. [DOI] [PubMed] [Google Scholar]
  35. Shih H., Towle H. C. Definition of the carbohydrate response element of the rat S14 gene. Context of the CACGTG motif determines the specificity of carbohydrate regulation. J Biol Chem. 1994 Mar 25;269(12):9380–9387. [PubMed] [Google Scholar]
  36. Soret B., Lee H. J., Finley E., Lee S. C., Vernon R. G. Regulation of differentiation of sheep subcutaneous and abdominal preadipocytes in culture. J Endocrinol. 1999 Jun;161(3):517–524. doi: 10.1677/joe.0.1610517. [DOI] [PubMed] [Google Scholar]
  37. Struhl K. Fundamentally different logic of gene regulation in eukaryotes and prokaryotes. Cell. 1999 Jul 9;98(1):1–4. doi: 10.1016/S0092-8674(00)80599-1. [DOI] [PubMed] [Google Scholar]
  38. Tae H. J., Luo X., Kim K. H. Roles of CCAAT/enhancer-binding protein and its binding site on repression and derepression of acetyl-CoA carboxylase gene. J Biol Chem. 1994 Apr 8;269(14):10475–10484. [PubMed] [Google Scholar]
  39. Travers M. T., Barber M. C. Insulin-glucocorticoid interactions in the regulation of acetyl-CoA carboxylase-alpha transcript diversity in ovine adipose tissue. J Mol Endocrinol. 1999 Feb;22(1):71–79. doi: 10.1677/jme.0.0220071. [DOI] [PubMed] [Google Scholar]
  40. Travers M. T., Vernon R. G., Barber M. C. Repression of the acetyl-CoA carboxylase gene in ovine adipose tissue during lactation: the role of insulin responsiveness. J Mol Endocrinol. 1997 Oct;19(2):99–107. doi: 10.1677/jme.0.0190099. [DOI] [PubMed] [Google Scholar]
  41. Vallet V. S., Casado M., Henrion A. A., Bucchini D., Raymondjean M., Kahn A., Vaulont S. Differential roles of upstream stimulatory factors 1 and 2 in the transcriptional response of liver genes to glucose. J Biol Chem. 1998 Aug 7;273(32):20175–20179. doi: 10.1074/jbc.273.32.20175. [DOI] [PubMed] [Google Scholar]
  42. Vallet V. S., Henrion A. A., Bucchini D., Casado M., Raymondjean M., Kahn A., Vaulont S. Glucose-dependent liver gene expression in upstream stimulatory factor 2 -/- mice. J Biol Chem. 1997 Aug 29;272(35):21944–21949. doi: 10.1074/jbc.272.35.21944. [DOI] [PubMed] [Google Scholar]
  43. Vaulont S., Vasseur-Cognet M., Kahn A. Glucose regulation of gene transcription. J Biol Chem. 2000 Oct 13;275(41):31555–31558. doi: 10.1074/jbc.R000016200. [DOI] [PubMed] [Google Scholar]
  44. Vernon R. G., Clegg R. A., Flint D. J. Metabolism of sheep adipose tissue during pregnancy and lactation. Adaptation and regulation. Biochem J. 1981 Nov 15;200(2):307–314. doi: 10.1042/bj2000307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wang D., Sul H. S. Upstream stimulatory factor binding to the E-box at -65 is required for insulin regulation of the fatty acid synthase promoter. J Biol Chem. 1997 Oct 17;272(42):26367–26374. doi: 10.1074/jbc.272.42.26367. [DOI] [PubMed] [Google Scholar]
  46. Wang D., Sul H. S. Upstream stimulatory factors bind to insulin response sequence of the fatty acid synthase promoter. USF1 is regulated. J Biol Chem. 1995 Dec 1;270(48):28716–28722. doi: 10.1074/jbc.270.48.28716. [DOI] [PubMed] [Google Scholar]
  47. Watkins P. A., Tarlow D. M., Lane M. D. Mechanism for acute control of fatty acid synthesis by glucagon and 3':5'-cyclic AMP in the liver cell. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1497–1501. doi: 10.1073/pnas.74.4.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Widmer J., Fassihi K. S., Schlichter S. C., Wheeler K. S., Crute B. E., King N., Nutile-McMenemy N., Noll W. W., Daniel S., Ha J. Identification of a second human acetyl-CoA carboxylase gene. Biochem J. 1996 Jun 15;316(Pt 3):915–922. doi: 10.1042/bj3160915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zammit V. A. Role of insulin in hepatic fatty acid partitioning: emerging concepts. Biochem J. 1996 Feb 15;314(Pt 1):1–14. doi: 10.1042/bj3140001. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES