Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Oct 15;359(Pt 2):335–343. doi: 10.1042/0264-6021:3590335

Sphingosine-induced apoptosis is dependent on lysosomal proteases.

K Kågedal 1, M Zhao 1, I Svensson 1, U T Brunk 1
PMCID: PMC1222151  PMID: 11583579

Abstract

We propose a new mechanism for sphingosine-induced apoptosis, involving relocation of lysosomal hydrolases to the cytosol. Owing to its lysosomotropic properties, sphingosine, which is also a detergent, especially when protonated, accumulates by proton trapping within the acidic vacuolar apparatus, where most of its action as a detergent would be exerted. When sphingosine was added in low-to-moderate concentrations to Jurkat and J774 cells, partial lysosomal rupture occurred dose-dependently, starting within a few minutes. This phenomenon preceded caspase activation, as well as changes of mitochondrial membrane potential. High sphingosine doses rapidly caused extensive lysosomal rupture and ensuing necrosis, without antecedent apoptosis or caspase activation. The sphingosine effect was prevented by pre-treatment with another, non-toxic, lysosomotropic base, ammonium chloride, at 10 mM. The lysosomal protease inhibitors, pepstatin A and epoxysuccinyl-L-leucylamido-3-methyl-butane ethyl ester ('E-64d'), inhibited markedly sphingosine-induced caspase activity to almost the same degree as the general caspase inhibitor benzyloxycarbonyl-Val-Ala-DL-Asp-fluoromethylketone ('Z-VAD-FMK'), although they did not by themselves inhibit caspases. We conclude that cathepsin D and one or more cysteine proteases, such as cathepsins B or L, are important mediators of sphingosine-induced apoptosis, working upstream of the caspase cascade and mitochondrial membrane-potential changes.

Full Text

The Full Text of this article is available as a PDF (296.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antunes F., Cadenas E., Brunk U. T. Apoptosis induced by exposure to a low steady-state concentration of H2O2 is a consequence of lysosomal rupture. Biochem J. 2001 Jun 1;356(Pt 2):549–555. doi: 10.1042/0264-6021:3560549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ariga T., Jarvis W. D., Yu R. K. Role of sphingolipid-mediated cell death in neurodegenerative diseases. J Lipid Res. 1998 Jan;39(1):1–16. [PubMed] [Google Scholar]
  3. Bottega R., Epand R. M., Ball E. H. Inhibition of protein kinase C by sphingosine correlates with the presence of positive charge. Biochem Biophys Res Commun. 1989 Oct 16;164(1):102–107. doi: 10.1016/0006-291x(89)91688-4. [DOI] [PubMed] [Google Scholar]
  4. Brunk U. T., Dalen H., Roberg K., Hellquist H. B. Photo-oxidative disruption of lysosomal membranes causes apoptosis of cultured human fibroblasts. Free Radic Biol Med. 1997;23(4):616–626. doi: 10.1016/s0891-5849(97)00007-5. [DOI] [PubMed] [Google Scholar]
  5. Brunk U. T., Neuzil J., Eaton J. W. Lysosomal involvement in apoptosis. Redox Rep. 2001;6(2):91–97. doi: 10.1179/135100001101536094. [DOI] [PubMed] [Google Scholar]
  6. Brunk U. T., Svensson I. Oxidative stress, growth factor starvation and Fas activation may all cause apoptosis through lysosomal leak. Redox Rep. 1999;4(1-2):3–11. doi: 10.1179/135100099101534675. [DOI] [PubMed] [Google Scholar]
  7. Cifone M. G., Roncaioli P., De Maria R., Camarda G., Santoni A., Ruberti G., Testi R. Multiple pathways originate at the Fas/APO-1 (CD95) receptor: sequential involvement of phosphatidylcholine-specific phospholipase C and acidic sphingomyelinase in the propagation of the apoptotic signal. EMBO J. 1995 Dec 1;14(23):5859–5868. doi: 10.1002/j.1460-2075.1995.tb00274.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Czech C., Tremp G., Pradier L. Presenilins and Alzheimer's disease: biological functions and pathogenic mechanisms. Prog Neurobiol. 2000 Mar;60(4):363–384. doi: 10.1016/s0301-0082(99)00033-7. [DOI] [PubMed] [Google Scholar]
  9. Deiss L. P., Galinka H., Berissi H., Cohen O., Kimchi A. Cathepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha. EMBO J. 1996 Aug 1;15(15):3861–3870. [PMC free article] [PubMed] [Google Scholar]
  10. Firestone R. A., Pisano J. M., Bonney R. J. Lysosomotropic agents. 1. Synthesis and cytotoxic action of lysosomotropic detergents. J Med Chem. 1979 Sep;22(9):1130–1133. doi: 10.1021/jm00195a026. [DOI] [PubMed] [Google Scholar]
  11. Guicciardi M. E., Deussing J., Miyoshi H., Bronk S. F., Svingen P. A., Peters C., Kaufmann S. H., Gores G. J. Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest. 2000 Nov;106(9):1127–1137. doi: 10.1172/JCI9914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hakomori S., Igarashi Y. Functional role of glycosphingolipids in cell recognition and signaling. J Biochem. 1995 Dec;118(6):1091–1103. doi: 10.1093/oxfordjournals.jbchem.a124992. [DOI] [PubMed] [Google Scholar]
  13. Hakomori S., Igarashi Y. Gangliosides and glycosphingolipids as modulators of cell growth, adhesion, and transmembrane signaling. Adv Lipid Res. 1993;25:147–162. [PubMed] [Google Scholar]
  14. Heinrich M., Wickel M., Schneider-Brachert W., Sandberg C., Gahr J., Schwandner R., Weber T., Saftig P., Peters C., Brunner J. Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J. 1999 Oct 1;18(19):5252–5263. doi: 10.1093/emboj/18.19.5252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hung W. C., Chang H. C., Chuang L. Y. Activation of caspase-3-like proteases in apoptosis induced by sphingosine and other long-chain bases in Hep3B hepatoma cells. Biochem J. 1999 Feb 15;338(Pt 1):161–166. [PMC free article] [PubMed] [Google Scholar]
  16. Isahara K., Ohsawa Y., Kanamori S., Shibata M., Waguri S., Sato N., Gotow T., Watanabe T., Momoi T., Urase K. Regulation of a novel pathway for cell death by lysosomal aspartic and cysteine proteinases. Neuroscience. 1999;91(1):233–249. doi: 10.1016/s0306-4522(98)00566-1. [DOI] [PubMed] [Google Scholar]
  17. Ishisaka R., Utsumi T., Kanno T., Arita K., Katunuma N., Akiyama J., Utsumi K. Participation of a cathepsin L-type protease in the activation of caspase-3. Cell Struct Funct. 1999 Dec;24(6):465–470. doi: 10.1247/csf.24.465. [DOI] [PubMed] [Google Scholar]
  18. Ishisaka R., Utsumi T., Yabuki M., Kanno T., Furuno T., Inoue M., Utsumi K. Activation of caspase-3-like protease by digitonin-treated lysosomes. FEBS Lett. 1998 Sep 18;435(2-3):233–236. doi: 10.1016/s0014-5793(98)01080-1. [DOI] [PubMed] [Google Scholar]
  19. Jacobson M. D., Weil M., Raff M. C. Programmed cell death in animal development. Cell. 1997 Feb 7;88(3):347–354. doi: 10.1016/s0092-8674(00)81873-5. [DOI] [PubMed] [Google Scholar]
  20. Kluck R. M., Bossy-Wetzel E., Green D. R., Newmeyer D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997 Feb 21;275(5303):1132–1136. doi: 10.1126/science.275.5303.1132. [DOI] [PubMed] [Google Scholar]
  21. Kroemer G., Zamzami N., Susin S. A. Mitochondrial control of apoptosis. Immunol Today. 1997 Jan;18(1):44–51. doi: 10.1016/s0167-5699(97)80014-x. [DOI] [PubMed] [Google Scholar]
  22. Li W., Yuan X., Nordgren G., Dalen H., Dubowchik G. M., Firestone R. A., Brunk U. T. Induction of cell death by the lysosomotropic detergent MSDH. FEBS Lett. 2000 Mar 17;470(1):35–39. doi: 10.1016/s0014-5793(00)01286-2. [DOI] [PubMed] [Google Scholar]
  23. March J. S., Franklin M., Nelson A., Foa E. Cognitive-behavioral psychotherapy for pediatric obsessive-compulsive disorder. J Clin Child Psychol. 2001 Mar;30(1):8–18. doi: 10.1207/S15374424JCCP3001_3. [DOI] [PubMed] [Google Scholar]
  24. Merrill A. H., Jr, Schmelz E. M., Dillehay D. L., Spiegel S., Shayman J. A., Schroeder J. J., Riley R. T., Voss K. A., Wang E. Sphingolipids--the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol. 1997 Jan;142(1):208–225. doi: 10.1006/taap.1996.8029. [DOI] [PubMed] [Google Scholar]
  25. Neuzil J., Svensson I., Weber T., Weber C., Brunk U. T. alpha-tocopheryl succinate-induced apoptosis in Jurkat T cells involves caspase-3 activation, and both lysosomal and mitochondrial destabilisation. FEBS Lett. 1999 Feb 26;445(2-3):295–300. doi: 10.1016/s0014-5793(99)00141-6. [DOI] [PubMed] [Google Scholar]
  26. Ollinger K., Brunk U. T. Cellular injury induced by oxidative stress is mediated through lysosomal damage. Free Radic Biol Med. 1995 Nov;19(5):565–574. doi: 10.1016/0891-5849(95)00062-3. [DOI] [PubMed] [Google Scholar]
  27. Olsson G. M., Brunmark A., Brunk U. T. Acridine orange-mediated photodamage of microsomal- and lysosomal fractions. Virchows Arch B Cell Pathol Incl Mol Pathol. 1989;56(4):247–257. doi: 10.1007/BF02890023. [DOI] [PubMed] [Google Scholar]
  28. Roberg K., Johansson U., Ollinger K. Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress. Free Radic Biol Med. 1999 Dec;27(11-12):1228–1237. doi: 10.1016/s0891-5849(99)00146-x. [DOI] [PubMed] [Google Scholar]
  29. Roberg K., Ollinger K. Oxidative stress causes relocation of the lysosomal enzyme cathepsin D with ensuing apoptosis in neonatal rat cardiomyocytes. Am J Pathol. 1998 May;152(5):1151–1156. [PMC free article] [PubMed] [Google Scholar]
  30. Roberg K. Relocalization of cathepsin D and cytochrome c early in apoptosis revealed by immunoelectron microscopy. Lab Invest. 2001 Feb;81(2):149–158. doi: 10.1038/labinvest.3780222. [DOI] [PubMed] [Google Scholar]
  31. Rundquist I., Olsson M., Brunk U. Cytofluorometric quantitation of acridine orange uptake by cultured cells. Acta Pathol Microbiol Immunol Scand A. 1984 Sep;92(5):303–309. doi: 10.1111/j.1699-0463.1984.tb04408.x. [DOI] [PubMed] [Google Scholar]
  32. Salvesen G. S. A lysosomal protease enters the death scene. J Clin Invest. 2001 Jan;107(1):21–22. doi: 10.1172/JCI11829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schotte P., Declercq W., Van Huffel S., Vandenabeele P., Beyaert R. Non-specific effects of methyl ketone peptide inhibitors of caspases. FEBS Lett. 1999 Jan 8;442(1):117–121. doi: 10.1016/s0014-5793(98)01640-8. [DOI] [PubMed] [Google Scholar]
  34. Schütze S., Machleidt T., Adam D., Schwandner R., Wiegmann K., Kruse M. L., Heinrich M., Wickel M., Krönke M. Inhibition of receptor internalization by monodansylcadaverine selectively blocks p55 tumor necrosis factor receptor death domain signaling. J Biol Chem. 1999 Apr 9;274(15):10203–10212. doi: 10.1074/jbc.274.15.10203. [DOI] [PubMed] [Google Scholar]
  35. Seglen P. O. Inhibitors of lysosomal function. Methods Enzymol. 1983;96:737–764. doi: 10.1016/s0076-6879(83)96063-9. [DOI] [PubMed] [Google Scholar]
  36. Shibata M., Kanamori S., Isahara K., Ohsawa Y., Konishi A., Kametaka S., Watanabe T., Ebisu S., Ishido K., Kominami E. Participation of cathepsins B and D in apoptosis of PC12 cells following serum deprivation. Biochem Biophys Res Commun. 1998 Oct 9;251(1):199–203. doi: 10.1006/bbrc.1998.9422. [DOI] [PubMed] [Google Scholar]
  37. Stoka V., Turk B., Schendel S. L., Kim T. H., Cirman T., Snipas S. J., Ellerby L. M., Bredesen D., Freeze H., Abrahamson M. Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem. 2000 Nov 9;276(5):3149–3157. doi: 10.1074/jbc.M008944200. [DOI] [PubMed] [Google Scholar]
  38. Sweeney E. A., Inokuchi J., Igarashi Y. Inhibition of sphingolipid induced apoptosis by caspase inhibitors indicates that sphingosine acts in an earlier part of the apoptotic pathway than ceramide. FEBS Lett. 1998 Mar 20;425(1):61–65. doi: 10.1016/s0014-5793(98)00198-7. [DOI] [PubMed] [Google Scholar]
  39. Sweeney E. A., Sakakura C., Shirahama T., Masamune A., Ohta H., Hakomori S., Igarashi Y. Sphingosine and its methylated derivative N,N-dimethylsphingosine (DMS) induce apoptosis in a variety of human cancer cell lines. Int J Cancer. 1996 May 3;66(3):358–366. doi: 10.1002/(SICI)1097-0215(19960503)66:3<358::AID-IJC16>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  40. Ségui B., Bezombes C., Uro-Coste E., Medin J. A., Andrieu-Abadie N., Augé N., Brouchet A., Laurent G., Salvayre R., Jaffrézou J. P. Stress-induced apoptosis is not mediated by endolysosomal ceramide. FASEB J. 2000 Jan;14(1):36–47. doi: 10.1096/fasebj.14.1.36. [DOI] [PubMed] [Google Scholar]
  41. Vancompernolle K., Van Herreweghe F., Pynaert G., Van de Craen M., De Vos K., Totty N., Sterling A., Fiers W., Vandenabeele P., Grooten J. Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Lett. 1998 Nov 6;438(3):150–158. doi: 10.1016/s0014-5793(98)01275-7. [DOI] [PubMed] [Google Scholar]
  42. Wang X. W. Role of p53 and apoptosis in carcinogenesis. Anticancer Res. 1999 Nov-Dec;19(6A):4759–4771. [PubMed] [Google Scholar]
  43. Wilson P. D., Firestone R. A., Lenard J. The role of lysosomal enzymes in killing of mammalian cells by the lysosomotropic detergent N-dodecylimidazole. J Cell Biol. 1987 May;104(5):1223–1229. doi: 10.1083/jcb.104.5.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wu G. S., Saftig P., Peters C., El-Deiry W. S. Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity. Oncogene. 1998 Apr 30;16(17):2177–2183. doi: 10.1038/sj.onc.1201755. [DOI] [PubMed] [Google Scholar]
  45. Zang Y., Beard R. L., Chandraratna R. A., Kang J. X. Evidence of a lysosomal pathway for apoptosis induced by the synthetic retinoid CD437 in human leukemia HL-60 cells. Cell Death Differ. 2001 May;8(5):477–485. doi: 10.1038/sj.cdd.4400843. [DOI] [PubMed] [Google Scholar]
  46. Zdolsek J. M., Olsson G. M., Brunk U. T. Photooxidative damage to lysosomes of cultured macrophages by acridine orange. Photochem Photobiol. 1990 Jan;51(1):67–76. doi: 10.1111/j.1751-1097.1990.tb01685.x. [DOI] [PubMed] [Google Scholar]
  47. Zdolsek J., Zhang H., Roberg K., Brunk U. H2O2-mediated damage to lysosomal membranes of J-774 cells. Free Radic Res Commun. 1993;18(2):71–85. doi: 10.3109/10715769309147344. [DOI] [PubMed] [Google Scholar]
  48. Zhao M., Eaton J. W., Brunk U. T. Protection against oxidant-mediated lysosomal rupture: a new anti-apoptotic activity of Bcl-2? FEBS Lett. 2000 Nov 24;485(2-3):104–108. doi: 10.1016/s0014-5793(00)02195-5. [DOI] [PubMed] [Google Scholar]
  49. de Duve C., de Barsy T., Poole B., Trouet A., Tulkens P., Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974 Sep 15;23(18):2495–2531. doi: 10.1016/0006-2952(74)90174-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES