Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Oct 15;359(Pt 2):361–367. doi: 10.1042/0264-6021:3590361

S-phase-specific expression of the Mad3 gene in proliferating and differentiating cells.

E J Fox 1, S C Wright 1
PMCID: PMC1222154  PMID: 11583582

Abstract

The Myc/Max/Mad transcription factor network plays a central role in the control of cellular proliferation, differentiation and apoptosis. In order to elucidate the biological function of Mad3, we have analysed the precise temporal patterns of Mad3 mRNA expression during the cell cycle and differentiation in cultured cells. We show that Mad3 is induced at the G1/S transition in proliferating cells; expression persists throughout S-phase, and then declines as cells pass through G2 and mitosis. The expression pattern of Mad3 is coincident with that of Cdc2 throughout the cell cycle. In contrast, the expression of Mad3 during differentiation of cultured mouse erythroleukemia cells shows two transient peaks of induction. The first of these occurs at the onset of differentiation, and does not correlate with the S-phase of the cell cycle, whereas the second is coincident with the S-phase burst that precedes the terminal stages of differentiation. Our results therefore suggest that Mad3 serves a cell-cycle-related function in both proliferating and differentiating cells, and that it may also have a distinct role at various stages of differentiation.

Full Text

The Full Text of this article is available as a PDF (224.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amati B., Dalton S., Brooks M. W., Littlewood T. D., Evan G. I., Land H. Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max. Nature. 1992 Oct 1;359(6394):423–426. doi: 10.1038/359423a0. [DOI] [PubMed] [Google Scholar]
  2. Ayer D. E., Eisenman R. N. A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/macrophage differentiation. Genes Dev. 1993 Nov;7(11):2110–2119. doi: 10.1101/gad.7.11.2110. [DOI] [PubMed] [Google Scholar]
  3. Ayer D. E., Kretzner L., Eisenman R. N. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell. 1993 Jan 29;72(2):211–222. doi: 10.1016/0092-8674(93)90661-9. [DOI] [PubMed] [Google Scholar]
  4. Ayer D. E., Laherty C. D., Lawrence Q. A., Armstrong A. P., Eisenman R. N. Mad proteins contain a dominant transcription repression domain. Mol Cell Biol. 1996 Oct;16(10):5772–5781. doi: 10.1128/mcb.16.10.5772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ayer D. E., Lawrence Q. A., Eisenman R. N. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell. 1995 Mar 10;80(5):767–776. doi: 10.1016/0092-8674(95)90355-0. [DOI] [PubMed] [Google Scholar]
  6. Baudino T. A., Cleveland J. L. The Max network gone mad. Mol Cell Biol. 2001 Feb;21(3):691–702. doi: 10.1128/MCB.21.3.691-702.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bejarano M. T., Albihn A., Cornvik T., Brijker S. O., Asker C., Osorio L. M., Henriksson M. Inhibition of cell growth and apoptosis by inducible expression of the transcriptional repressor Mad1. Exp Cell Res. 2000 Oct 10;260(1):61–72. doi: 10.1006/excr.2000.4996. [DOI] [PubMed] [Google Scholar]
  8. Berberich S., Hyde-DeRuyscher N., Espenshade P., Cole M. max encodes a sequence-specific DNA-binding protein and is not regulated by serum growth factors. Oncogene. 1992 Apr;7(4):775–779. [PubMed] [Google Scholar]
  9. Blackwell T. K., Huang J., Ma A., Kretzner L., Alt F. W., Eisenman R. N., Weintraub H. Binding of myc proteins to canonical and noncanonical DNA sequences. Mol Cell Biol. 1993 Sep;13(9):5216–5224. doi: 10.1128/mcb.13.9.5216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Blackwell T. K., Kretzner L., Blackwood E. M., Eisenman R. N., Weintraub H. Sequence-specific DNA binding by the c-Myc protein. Science. 1990 Nov 23;250(4984):1149–1151. doi: 10.1126/science.2251503. [DOI] [PubMed] [Google Scholar]
  11. Blackwood E. M., Eisenman R. N. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science. 1991 Mar 8;251(4998):1211–1217. doi: 10.1126/science.2006410. [DOI] [PubMed] [Google Scholar]
  12. Blackwood E. M., Lüscher B., Eisenman R. N. Myc and Max associate in vivo. Genes Dev. 1992 Jan;6(1):71–80. doi: 10.1101/gad.6.1.71. [DOI] [PubMed] [Google Scholar]
  13. Brough D. E., Hofmann T. J., Ellwood K. B., Townley R. A., Cole M. D. An essential domain of the c-myc protein interacts with a nuclear factor that is also required for E1A-mediated transformation. Mol Cell Biol. 1995 Mar;15(3):1536–1544. doi: 10.1128/mcb.15.3.1536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cerni C., Bousset K., Seelos C., Burkhardt H., Henriksson M., Lüscher B. Differential effects by Mad and Max on transformation by cellular and viral oncoproteins. Oncogene. 1995 Aug 3;11(3):587–596. [PubMed] [Google Scholar]
  15. Chen J., Willingham T., Margraf L. R., Schreiber-Agus N., DePinho R. A., Nisen P. D. Effects of the MYC oncogene antagonist, MAD, on proliferation, cell cycling and the malignant phenotype of human brain tumour cells. Nat Med. 1995 Jul;1(7):638–643. doi: 10.1038/nm0795-638. [DOI] [PubMed] [Google Scholar]
  16. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  17. Cole M. D., McMahon S. B. The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene. 1999 May 13;18(19):2916–2924. doi: 10.1038/sj.onc.1202748. [DOI] [PubMed] [Google Scholar]
  18. Coller H. A., Grandori C., Tamayo P., Colbert T., Lander E. S., Eisenman R. N., Golub T. R. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3260–3265. doi: 10.1073/pnas.97.7.3260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Coppola J. A., Cole M. D. Constitutive c-myc oncogene expression blocks mouse erythroleukaemia cell differentiation but not commitment. Nature. 1986 Apr 24;320(6064):760–763. doi: 10.1038/320760a0. [DOI] [PubMed] [Google Scholar]
  20. Cultraro C. M., Bino T., Segal S. Function of the c-Myc antagonist Mad1 during a molecular switch from proliferation to differentiation. Mol Cell Biol. 1997 May;17(5):2353–2359. doi: 10.1128/mcb.17.5.2353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Dalton S. Cell cycle regulation of the human cdc2 gene. EMBO J. 1992 May;11(5):1797–1804. doi: 10.1002/j.1460-2075.1992.tb05231.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Dang C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999 Jan;19(1):1–11. doi: 10.1128/mcb.19.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. DePinho R. A., Schreiber-Agus N., Alt F. W. myc family oncogenes in the development of normal and neoplastic cells. Adv Cancer Res. 1991;57:1–46. doi: 10.1016/s0065-230x(08)60994-x. [DOI] [PubMed] [Google Scholar]
  24. Eberhardy S. R., D'Cunha C. A., Farnham P. J. Direct examination of histone acetylation on Myc target genes using chromatin immunoprecipitation. J Biol Chem. 2000 Oct 27;275(43):33798–33805. doi: 10.1074/jbc.M005154200. [DOI] [PubMed] [Google Scholar]
  25. Foley K. P., McArthur G. A., Quéva C., Hurlin P. J., Soriano P., Eisenman R. N. Targeted disruption of the MYC antagonist MAD1 inhibits cell cycle exit during granulocyte differentiation. EMBO J. 1998 Feb 2;17(3):774–785. doi: 10.1093/emboj/17.3.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Freytag S. O. Enforced expression of the c-myc oncogene inhibits cell differentiation by precluding entry into a distinct predifferentiation state in G0/G1. Mol Cell Biol. 1988 Apr;8(4):1614–1624. doi: 10.1128/mcb.8.4.1614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Gehring S., Rottmann S., Menkel A. R., Mertsching J., Krippner-Heidenreich A., Lüscher B. Inhibition of proliferation and apoptosis by the transcriptional repressor Mad1. Repression of Fas-induced caspase-8 activation. J Biol Chem. 2000 Apr 7;275(14):10413–10420. doi: 10.1074/jbc.275.14.10413. [DOI] [PubMed] [Google Scholar]
  28. Grandori C., Cowley S. M., James L. P., Eisenman R. N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol. 2000;16:653–699. doi: 10.1146/annurev.cellbio.16.1.653. [DOI] [PubMed] [Google Scholar]
  29. Grandori C., Eisenman R. N. Myc target genes. Trends Biochem Sci. 1997 May;22(5):177–181. doi: 10.1016/s0968-0004(97)01025-6. [DOI] [PubMed] [Google Scholar]
  30. Gusella J. F., Housman D. Induction of erythroid differentiation in vitro by purines and purine analogues. Cell. 1976 Jun;8(2):263–269. doi: 10.1016/0092-8674(76)90010-6. [DOI] [PubMed] [Google Scholar]
  31. Hassig C. A., Fleischer T. C., Billin A. N., Schreiber S. L., Ayer D. E. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell. 1997 May 2;89(3):341–347. doi: 10.1016/s0092-8674(00)80214-7. [DOI] [PubMed] [Google Scholar]
  32. Henriksson M., Lüscher B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res. 1996;68:109–182. doi: 10.1016/s0065-230x(08)60353-x. [DOI] [PubMed] [Google Scholar]
  33. Hurlin P. J., Quéva C., Koskinen P. J., Steingrímsson E., Ayer D. E., Copeland N. G., Jenkins N. A., Eisenman R. N. Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation. EMBO J. 1995 Nov 15;14(22):5646–5659. doi: 10.1002/j.1460-2075.1995.tb00252.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kasten M. M., Ayer D. E., Stillman D. J. SIN3-dependent transcriptional repression by interaction with the Mad1 DNA-binding protein. Mol Cell Biol. 1996 Aug;16(8):4215–4221. doi: 10.1128/mcb.16.8.4215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kato G. J., Barrett J., Villa-Garcia M., Dang C. V. An amino-terminal c-myc domain required for neoplastic transformation activates transcription. Mol Cell Biol. 1990 Nov;10(11):5914–5920. doi: 10.1128/mcb.10.11.5914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Koskinen P. J., Ayer D. E., Eisenman R. N. Repression of Myc-Ras cotransformation by Mad is mediated by multiple protein-protein interactions. Cell Growth Differ. 1995 Jun;6(6):623–629. [PubMed] [Google Scholar]
  37. Kretzner L., Blackwood E. M., Eisenman R. N. Transcriptional activities of the Myc and Max proteins in mammalian cells. Curr Top Microbiol Immunol. 1992;182:435–443. doi: 10.1007/978-3-642-77633-5_55. [DOI] [PubMed] [Google Scholar]
  38. Lachman H. M., Hatton K. S., Skoultchi A. I., Schildkraut C. L. c-myc mRNA levels in the cell cycle change in mouse erythroleukemia cells following inducer treatment. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5323–5327. doi: 10.1073/pnas.82.16.5323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Lachman H. M., Skoultchi A. I. Expression of c-myc changes during differentiation of mouse erythroleukaemia cells. Nature. 1984 Aug 16;310(5978):592–594. doi: 10.1038/310592a0. [DOI] [PubMed] [Google Scholar]
  40. Laherty C. D., Yang W. M., Sun J. M., Davie J. R., Seto E., Eisenman R. N. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell. 1997 May 2;89(3):349–356. doi: 10.1016/s0092-8674(00)80215-9. [DOI] [PubMed] [Google Scholar]
  41. Lahoz E. G., Xu L., Schreiber-Agus N., DePinho R. A. Suppression of Myc, but not E1a, transformation activity by Max-associated proteins, Mad and Mxi1. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5503–5507. doi: 10.1073/pnas.91.12.5503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Larsson L. G., Pettersson M., Oberg F., Nilsson K., Lüscher B. Expression of mad, mxi1, max and c-myc during induced differentiation of hematopoietic cells: opposite regulation of mad and c-myc. Oncogene. 1994 Apr;9(4):1247–1252. [PubMed] [Google Scholar]
  43. Levenson R., Housman D. Developmental program of murine erythroleukemia cells. Effect of the inhibition of protein synthesis. J Cell Biol. 1979 Sep;82(3):715–725. doi: 10.1083/jcb.82.3.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Marks P. A., Rifkind R. A. Erythroleukemic differentiation. Annu Rev Biochem. 1978;47:419–448. doi: 10.1146/annurev.bi.47.070178.002223. [DOI] [PubMed] [Google Scholar]
  45. McMahon S. B., Wood M. A., Cole M. D. The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol Cell Biol. 2000 Jan;20(2):556–562. doi: 10.1128/mcb.20.2.556-562.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Nesbit C. E., Tersak J. M., Prochownik E. V. MYC oncogenes and human neoplastic disease. Oncogene. 1999 May 13;18(19):3004–3016. doi: 10.1038/sj.onc.1202746. [DOI] [PubMed] [Google Scholar]
  47. O'Hagan R. C., Schreiber-Agus N., Chen K., David G., Engelman J. A., Schwab R., Alland L., Thomson C., Ronning D. R., Sacchettini J. C. Gene-target recognition among members of the myc superfamily and implications for oncogenesis. Nat Genet. 2000 Feb;24(2):113–119. doi: 10.1038/72761. [DOI] [PubMed] [Google Scholar]
  48. Oh S., Song Y. H., Yim J., Kim T. K. Identification of Mad as a repressor of the human telomerase (hTERT) gene. Oncogene. 2000 Mar 9;19(11):1485–1490. doi: 10.1038/sj.onc.1203439. [DOI] [PubMed] [Google Scholar]
  49. Prendergast G. C. Mechanisms of apoptosis by c-Myc. Oncogene. 1999 May 13;18(19):2967–2987. doi: 10.1038/sj.onc.1202727. [DOI] [PubMed] [Google Scholar]
  50. Pulverer B., Sommer A., McArthur G. A., Eisenman R. N., Lüscher B. Analysis of Myc/Max/Mad network members in adipogenesis: inhibition of the proliferative burst and differentiation by ectopically expressed Mad1. J Cell Physiol. 2000 Jun;183(3):399–410. doi: 10.1002/(SICI)1097-4652(200006)183:3<399::AID-JCP13>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  51. Quéva C., Hurlin P. J., Foley K. P., Eisenman R. N. Sequential expression of the MAD family of transcriptional repressors during differentiation and development. Oncogene. 1998 Feb 26;16(8):967–977. doi: 10.1038/sj.onc.1201611. [DOI] [PubMed] [Google Scholar]
  52. Quéva C., McArthur G. A., Iritani B. M., Eisenman R. N. Targeted deletion of the S-phase-specific Myc antagonist Mad3 sensitizes neuronal and lymphoid cells to radiation-induced apoptosis. Mol Cell Biol. 2001 Feb;21(3):703–712. doi: 10.1128/MCB.21.3.703-712.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Quéva C., McArthur G. A., Ramos L. S., Eisenman R. N. Dwarfism and dysregulated proliferation in mice overexpressing the MYC antagonist MAD1. Cell Growth Differ. 1999 Dec;10(12):785–796. [PubMed] [Google Scholar]
  54. Roussel M. F., Ashmun R. A., Sherr C. J., Eisenman R. N., Ayer D. E. Inhibition of cell proliferation by the Mad1 transcriptional repressor. Mol Cell Biol. 1996 Jun;16(6):2796–2801. doi: 10.1128/mcb.16.6.2796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Sakamuro D., Prendergast G. C. New Myc-interacting proteins: a second Myc network emerges. Oncogene. 1999 May 13;18(19):2942–2954. doi: 10.1038/sj.onc.1202725. [DOI] [PubMed] [Google Scholar]
  56. Schreiber-Agus N., DePinho R. A. Repression by the Mad(Mxi1)-Sin3 complex. Bioessays. 1998 Oct;20(10):808–818. doi: 10.1002/(SICI)1521-1878(199810)20:10<808::AID-BIES6>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  57. Schreiber-Agus N., Meng Y., Hoang T., Hou H., Jr, Chen K., Greenberg R., Cordon-Cardo C., Lee H. W., DePinho R. A. Role of Mxi1 in ageing organ systems and the regulation of normal and neoplastic growth. Nature. 1998 Jun 4;393(6684):483–487. doi: 10.1038/31008. [DOI] [PubMed] [Google Scholar]
  58. Terada M., Fried J., Nudel U., Rifkind R. A., Marks P. A. Transient inhibition of initiation of S-phase associated with dimethyl sulfoxide induction of murine erythroleukemia cells to erythroid differentiation. Proc Natl Acad Sci U S A. 1977 Jan;74(1):248–252. doi: 10.1073/pnas.74.1.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Västrik I., Kaipainen A., Penttilä T. L., Lymboussakis A., Alitalo R., Parvinen M., Alitalo K. Expression of the mad gene during cell differentiation in vivo and its inhibition of cell growth in vitro. J Cell Biol. 1995 Mar;128(6):1197–1208. doi: 10.1083/jcb.128.6.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Wechsler D. S., Shelly C. A., Petroff C. A., Dang C. V. MXI1, a putative tumor suppressor gene, suppresses growth of human glioblastoma cells. Cancer Res. 1997 Nov 1;57(21):4905–4912. [PubMed] [Google Scholar]
  61. Wood M. A., McMahon S. B., Cole M. D. An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol Cell. 2000 Feb;5(2):321–330. doi: 10.1016/s1097-2765(00)80427-x. [DOI] [PubMed] [Google Scholar]
  62. Wright S., Bishop J. M. DNA sequences that mediate attenuation of transcription from the mouse protooncogene myc. Proc Natl Acad Sci U S A. 1989 Jan;86(2):505–509. doi: 10.1073/pnas.86.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Zervos A. S., Gyuris J., Brent R. Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell. 1993 Jan 29;72(2):223–232. doi: 10.1016/0092-8674(93)90662-a. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES