Abstract
The mechanism-based reagent 5-fluoro-alpha-d-glucopyranosyl fluoride (5F alpha GlcF) was used to trap a glycosyl-enzyme intermediate and identify the catalytic nucleophile at the active site of Aspergillus niger alpha-glucosidase (Family 31). Incubation of the enzyme with 5F alpha GlcF, followed by peptic proteolysis and comparative liquid chromatography/MS mapping allowed the isolation of a labelled peptide. Fragmentation analysis of this peptide by tandem MS yielded the sequence WYDMSE, with the label located on the aspartic acid residue (D). Comparison with the known protein sequence identified the labelled amino acid as Asp-224 of the P2 subunit.
Full Text
The Full Text of this article is available as a PDF (151.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chiba S., Hiromi K., Minamiura N., Ohnishi M., Shimomura T., Suga K., Suganuma T., Tanaka A., Tomioka S., Yamamoto T. Quantitative study on anomeric forms of glucose produced by alpha-glucosidases. J Biochem. 1979 May;85(5):1135–1141. [PubMed] [Google Scholar]
- Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995 Sep 15;3(9):853–859. doi: 10.1016/S0969-2126(01)00220-9. [DOI] [PubMed] [Google Scholar]
- Frandsen T. P., Svensson B. Plant alpha-glucosidases of the glycoside hydrolase family 31. Molecular properties, substrate specificity, reaction mechanism, and comparison with family members of different origin. Plant Mol Biol. 1998 May;37(1):1–13. doi: 10.1023/a:1005925819741. [DOI] [PubMed] [Google Scholar]
- Gebler J. C., Aebersold R., Withers S. G. Glu-537, not Glu-461, is the nucleophile in the active site of (lac Z) beta-galactosidase from Escherichia coli. J Biol Chem. 1992 Jun 5;267(16):11126–11130. [PubMed] [Google Scholar]
- Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993 Aug 1;293(Pt 3):781–788. doi: 10.1042/bj2930781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henrissat B. Glycosidase families. Biochem Soc Trans. 1998 May;26(2):153–156. doi: 10.1042/bst0260153. [DOI] [PubMed] [Google Scholar]
- Hermans M. M., Kroos M. A., van Beeumen J., Oostra B. A., Reuser A. J. Human lysosomal alpha-glucosidase. Characterization of the catalytic site. J Biol Chem. 1991 Jul 25;266(21):13507–13512. [PubMed] [Google Scholar]
- Howard S., He S., Withers S. G. Identification of the active site nucleophile in jack bean alpha-mannosidase using 5-fluoro-beta-L-gulosyl fluoride. J Biol Chem. 1998 Jan 23;273(4):2067–2072. doi: 10.1074/jbc.273.4.2067. [DOI] [PubMed] [Google Scholar]
- Iwanami S., Matsui H., Kimura A., Ito H., Mori H., Honma M., Chiba S. Chemical modification and amino acid sequence of active site in sugar beet alpha-glucosidase. Biosci Biotechnol Biochem. 1995 Mar;59(3):459–463. doi: 10.1271/bbb.59.459. [DOI] [PubMed] [Google Scholar]
- Kimura A., Takata M., Fukushi Y., Mori H., Matsui H., Chiba S. A catalytic amino acid and primary structure of active site in Aspergillus niger alpha-glucosidase. Biosci Biotechnol Biochem. 1997 Jul;61(7):1091–1098. doi: 10.1271/bbb.61.1091. [DOI] [PubMed] [Google Scholar]
- Kimura A., Takata M., Sakai O., Matsui H., Takai N., Takayanagi T., Nishimura I., Uozumi T., Chiba S. Complete amino acid sequence of crystalline alpha-glucosidase from Aspergillus niger. Biosci Biotechnol Biochem. 1992 Aug;56(8):1368–1370. doi: 10.1271/bbb.56.1368. [DOI] [PubMed] [Google Scholar]
- Legler G. Glycoside hydrolases: mechanistic information from studies with reversible and irreversible inhibitors. Adv Carbohydr Chem Biochem. 1990;48:319–384. doi: 10.1016/s0065-2318(08)60034-7. [DOI] [PubMed] [Google Scholar]
- Ly H. D., Howard S., Shum K., He S., Zhu A., Withers S. G. The synthesis, testing and use of 5-fluoro-alpha-D-galactosyl fluoride to trap an intermediate on green coffee bean alpha-galactosidase and identify the catalytic nucleophile. Carbohydr Res. 2000 Nov 17;329(3):539–547. doi: 10.1016/s0008-6215(00)00214-7. [DOI] [PubMed] [Google Scholar]
- McCarter J. D., Withers S. G. Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol. 1994 Dec;4(6):885–892. doi: 10.1016/0959-440x(94)90271-2. [DOI] [PubMed] [Google Scholar]
- McCarter J. D., Withers S. G. Unequivocal identification of Asp-214 as the catalytic nucleophile of Saccharomyces cerevisiae alpha-glucosidase using 5-fluoro glycosyl fluorides. J Biol Chem. 1996 Mar 22;271(12):6889–6894. doi: 10.1074/jbc.271.12.6889. [DOI] [PubMed] [Google Scholar]
- Miao S., McCarter J. D., Grace M. E., Grabowski G. A., Aebersold R., Withers S. G. Identification of Glu340 as the active-site nucleophile in human glucocerebrosidase by use of electrospray tandem mass spectrometry. J Biol Chem. 1994 Apr 15;269(15):10975–10978. [PubMed] [Google Scholar]
- Numao S., He S., Evjen G., Howard S., Tollersrud O. K., Withers S. G. Identification of Asp197 as the catalytic nucleophile in the family 38 alpha-mannosidase from bovine kidney lysosomes. FEBS Lett. 2000 Nov 10;484(3):175–178. doi: 10.1016/s0014-5793(00)02148-7. [DOI] [PubMed] [Google Scholar]
- Quaroni A., Semenza G. Partial amino acid sequences around the essential carboxylate in the active sites of the intestinal sucrase-isomaltase complex. J Biol Chem. 1976 Jun 10;251(11):3250–3253. [PubMed] [Google Scholar]
- Stoll D., He S., Withers S. G., Warren R. A. Identification of Glu-519 as the catalytic nucleophile in beta-mannosidase 2A from Cellulomonas fimi. Biochem J. 2000 Nov 1;351(Pt 3):833–838. [PMC free article] [PubMed] [Google Scholar]
- Takayanagi T., Kimura A., Chiba S., Ajisaka K. Novel structures of N-linked high-mannose type oligosaccharides containing alpha-D-galactofuranosyl linkages in Aspergillus niger alpha-D-glucosidase. Carbohydr Res. 1994 Mar 18;256(1):149–158. doi: 10.1016/0008-6215(94)84234-5. [DOI] [PubMed] [Google Scholar]
- Wentworth D. F., Wolfenden R. Slow binding of D-galactal, a "reversible" inhibitor of bacterial beta-galactosidase. Biochemistry. 1974 Nov 5;13(23):4715–4720. doi: 10.1021/bi00720a006. [DOI] [PubMed] [Google Scholar]
- Withers S. G., Aebersold R. Approaches to labeling and identification of active site residues in glycosidases. Protein Sci. 1995 Mar;4(3):361–372. doi: 10.1002/pro.5560040302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu S., Bojsen K., Svensson B., Marcussen J. alpha-1,4-glucan lyases producing 1,5-anhydro-D-fructose from starch and glycogen have sequence similarity to alpha-glucosidases. Biochim Biophys Acta. 1999 Aug 17;1433(1-2):1–15. doi: 10.1016/s0167-4838(99)00152-1. [DOI] [PubMed] [Google Scholar]
- Zechel D. L., Withers S. G. Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc Chem Res. 2000 Jan;33(1):11–18. doi: 10.1021/ar970172+. [DOI] [PubMed] [Google Scholar]