Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Oct 15;359(Pt 2):411–418. doi: 10.1042/0264-6021:3590411

The result of equilibrium-constant calculations strongly depends on the evaluation method used and on the type of experimental errors.

H Fuchs 1, R Gessner 1
PMCID: PMC1222161  PMID: 11583589

Abstract

The determination of equilibrium constants is a widespread tool both to understand and to characterize protein-protein interactions. A variety of different methods, among them Scatchard analysis, is used to calculate these constants. Although more than 1000 articles dealing with equilibrium constants are published every year, the effects of experimental errors on the results are often disregarded when interpreting the data. In the present study we theoretically analysed the effect of various types of experimental errors on equilibrium constants derived by three different methods. A computer simulation clearly showed that certain experimental errors, namely inaccurate background correction, inexact calibration, saturation effects, slow kinetics and simple scattering, can adversely affect the result. The analysis further revealed that, for a given type of error, the same data set can produce different results depending on the method used.

Full Text

The Full Text of this article is available as a PDF (191.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschuh D., Dubs M. C., Weiss E., Zeder-Lutz G., Van Regenmortel M. H. Determination of kinetic constants for the interaction between a monoclonal antibody and peptides using surface plasmon resonance. Biochemistry. 1992 Jul 14;31(27):6298–6304. doi: 10.1021/bi00142a019. [DOI] [PubMed] [Google Scholar]
  2. Baghurst P. A., Nichol L. W., Winzor D. J. Conditions for the existence of critical points in Scatchard plots of binding results. J Theor Biol. 1978 Oct 21;74(4):523–534. doi: 10.1016/0022-5193(78)90239-4. [DOI] [PubMed] [Google Scholar]
  3. Crabbe J. Correct use of Scatchard plots. Trends Biochem Sci. 1990 Jan;15(1):12–13. doi: 10.1016/0968-0004(90)90120-z. [DOI] [PubMed] [Google Scholar]
  4. Cressie N. A., Keightley D. D. The underlying structure of the direct linear plot with application to the analysis of hormone-receptor interactions. J Steroid Biochem. 1979 Aug;11(2):1173–1180. doi: 10.1016/0022-4731(79)90170-5. [DOI] [PubMed] [Google Scholar]
  5. Eisenthal R., Cornish-Bowden A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974 Jun;139(3):715–720. doi: 10.1042/bj1390715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feldman H. A. Statistical limits in Scatchard analysis. J Biol Chem. 1983 Nov 10;258(21):12865–12867. [PubMed] [Google Scholar]
  7. Fuchs H., Orberger G., Tauber R., Gessner R. Direct calibration ELISA: a rapid method for the simplified determination of association constants of unlabeled biological molecules. J Immunol Methods. 1995 Dec 27;188(2):197–208. doi: 10.1016/0022-1759(95)00202-2. [DOI] [PubMed] [Google Scholar]
  8. Glaser R. W. Determination of antibody affinity by ELISA with a non-linear regression program. Evaluation of linearized approximations. J Immunol Methods. 1993 Mar 15;160(1):129–133. doi: 10.1016/0022-1759(93)90016-z. [DOI] [PubMed] [Google Scholar]
  9. Hollemans H. J., Bertina R. M. Scatchard plot and heterogeneity in binding affinity of labeled and unlabeled ligand. Clin Chem. 1975 Nov;21(12):1769–1773. [PubMed] [Google Scholar]
  10. Keightley D. D., Cressie N. A. The Woolf plot is more reliable than the Scatchard plot in analysing data from hormone receptor assays. J Steroid Biochem. 1980 Nov;13(11):1317–1323. doi: 10.1016/0022-4731(80)90092-8. [DOI] [PubMed] [Google Scholar]
  11. Klotz I. M. Numbers of receptor sites from Scatchard graphs: facts and fantasies. Science. 1982 Sep 24;217(4566):1247–1249. doi: 10.1126/science.6287580. [DOI] [PubMed] [Google Scholar]
  12. Liliom K., Orosz F., Horváth L., Ovádi J. Quantitative evaluation of indirect ELISA. Effect of calmodulin antagonists on antibody binding to calmodulin. J Immunol Methods. 1991 Sep 20;143(1):119–125. doi: 10.1016/0022-1759(91)90280-s. [DOI] [PubMed] [Google Scholar]
  13. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  14. Munson P. J., Rodbard D. Number of receptor sites from Scatchard and Klotz graphs: a constructive critique. Science. 1983 May 27;220(4600):979–981. doi: 10.1126/science.6302842. [DOI] [PubMed] [Google Scholar]
  15. Nekhai S. A., Beletzkij V. E., Graifer D. M. Influence of systematic error on the shape of the scatchard plot of tRNAPhe binding to eukaryotic ribosomes. Biochem J. 1997 Jul 15;325(Pt 2):401–404. doi: 10.1042/bj3250401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nørby J. G., Ottolenghi P., Jensen J. Scatchard plot: common misinterpretation of binding experiments. Anal Biochem. 1980 Mar 1;102(2):318–320. doi: 10.1016/0003-2697(80)90160-8. [DOI] [PubMed] [Google Scholar]
  17. Oates M. R., Clarke W., Marsh E. M., Hage D. S. Kinetic studies on the immobilization of antibodies to high-performance liquid chromatographic supports. Bioconjug Chem. 1998 Jul-Aug;9(4):459–465. doi: 10.1021/bc970177r. [DOI] [PubMed] [Google Scholar]
  18. Rovati G. E., Rodbard D., Munson P. J. DESIGN: computerized optimization of experimental design for estimating Kd and Bmax in ligand binding experiments. I. Homologous and heterologous binding to one or two classes of sites. Anal Biochem. 1988 Nov 1;174(2):636–649. doi: 10.1016/0003-2697(88)90067-x. [DOI] [PubMed] [Google Scholar]
  19. Weder H. G., Schildknecht J., Lutz R. A., Kesselring P. Determination of binding parameters from Scatchard plots. Theoretical and practical considerations. Eur J Biochem. 1974 Mar 1;42(2):475–481. doi: 10.1111/j.1432-1033.1974.tb03361.x. [DOI] [PubMed] [Google Scholar]
  20. Woosley J. T., Muldoon T. G. Comparison of the accuracy of the Scatchard, Lineweaver-Burk and direct linear plots for the analysis of steroid-protein interactions. J Steroid Biochem. 1977 Jun;8(6):625–629. doi: 10.1016/0022-4731(77)90289-8. [DOI] [PubMed] [Google Scholar]
  21. Zierler K. Misuse of nonlinear Scatchard plots. Trends Biochem Sci. 1989 Aug;14(8):314–317. doi: 10.1016/0968-0004(89)90157-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES