Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Oct 15;359(Pt 2):443–449. doi: 10.1042/0264-6021:3590443

Characterization of human glucose transporter (GLUT) 11 (encoded by SLC2A11), a novel sugar-transport facilitator specifically expressed in heart and skeletal muscle.

H Doege 1, A Bocianski 1, A Scheepers 1, H Axer 1, J Eckel 1, H G Joost 1, A Schürmann 1
PMCID: PMC1222165  PMID: 11583593

Abstract

Human GLUT11 (encoded by the solute carrier 2A11 gene, SLC2A11) is a novel sugar transporter which exhibits significant sequence similarity with the members of the GLUT family. The amino acid sequence deduced from its cDNAs predicts 12 putative membrane-spanning helices and all the motifs (sugar-transporter signatures) that have previously been shown to be essential for sugar-transport activity. The closest relative of GLUT11 is the fructose transporter GLUT5 (sharing 41.7% amino acid identity with GLUT11). The human GLUT11 gene (SLC2A11) consists of 12 exons and is located on chromosome 22q11.2. In human tissues, a 7.2 kb transcript of GLUT11 was detected exclusively in heart and skeletal muscle. Transfection of COS-7 cells with GLUT11 cDNA significantly increased the glucose-transport activity reconstituted from membrane extracts as well as the specific binding of the sugar-transporter ligand cytochalasin B. In contrast to that of GLUT4, the glucose-transport activity of GLUT11 was markedly inhibited by fructose. It is concluded that GLUT11 is a novel, muscle-specific transport facilitator that is a member of the extended GLUT family of sugar/polyol-transport facilitators.

Full Text

The Full Text of this article is available as a PDF (299.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell G. I., Kayano T., Buse J. B., Burant C. F., Takeda J., Lin D., Fukumoto H., Seino S. Molecular biology of mammalian glucose transporters. Diabetes Care. 1990 Mar;13(3):198–208. doi: 10.2337/diacare.13.3.198. [DOI] [PubMed] [Google Scholar]
  2. Carayannopoulos M. O., Chi M. M., Cui Y., Pingsterhaus J. M., McKnight R. A., Mueckler M., Devaskar S. U., Moley K. H. GLUT8 is a glucose transporter responsible for insulin-stimulated glucose uptake in the blastocyst. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7313–7318. doi: 10.1073/pnas.97.13.7313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Doege H., Bocianski A., Joost H. G., Schürmann A. Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes. Biochem J. 2000 Sep 15;350(Pt 3):771–776. [PMC free article] [PubMed] [Google Scholar]
  4. Doege H., Schürmann A., Bahrenberg G., Brauers A., Joost H. G. GLUT8, a novel member of the sugar transport facilitator family with glucose transport activity. J Biol Chem. 2000 May 26;275(21):16275–16280. doi: 10.1074/jbc.275.21.16275. [DOI] [PubMed] [Google Scholar]
  5. Eisenberg D., Schwarz E., Komaromy M., Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol. 1984 Oct 15;179(1):125–142. doi: 10.1016/0022-2836(84)90309-7. [DOI] [PubMed] [Google Scholar]
  6. Garcia J. C., Strube M., Leingang K., Keller K., Mueckler M. M. Amino acid substitutions at tryptophan 388 and tryptophan 412 of the HepG2 (Glut1) glucose transporter inhibit transport activity and targeting to the plasma membrane in Xenopus oocytes. J Biol Chem. 1992 Apr 15;267(11):7770–7776. [PubMed] [Google Scholar]
  7. Gould G. W., Holman G. D. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993 Oct 15;295(Pt 2):329–341. doi: 10.1042/bj2950329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hashiramoto M., Kadowaki T., Clark A. E., Muraoka A., Momomura K., Sakura H., Tobe K., Akanuma Y., Yazaki Y., Holman G. D. Site-directed mutagenesis of GLUT1 in helix 7 residue 282 results in perturbation of exofacial ligand binding. J Biol Chem. 1992 Sep 5;267(25):17502–17507. [PubMed] [Google Scholar]
  9. Ibberson M., Uldry M., Thorens B. GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin-sensitive tissues. J Biol Chem. 2000 Feb 18;275(7):4607–4612. doi: 10.1074/jbc.275.7.4607. [DOI] [PubMed] [Google Scholar]
  10. Joost H. G., Steinfelder H. J. Forskolin inhibits insulin-stimulated glucose transport in rat adipose cells by a direct interaction with the glucose transporter. Mol Pharmacol. 1987 Mar;31(3):279–283. [PubMed] [Google Scholar]
  11. Kane S., Seatter M. J., Gould G. W. Functional studies of human GLUT5: effect of pH on substrate selection and an analysis of substrate interactions. Biochem Biophys Res Commun. 1997 Sep 18;238(2):503–505. doi: 10.1006/bbrc.1997.7204. [DOI] [PubMed] [Google Scholar]
  12. Katz E. B., Stenbit A. E., Hatton K., DePinho R., Charron M. J. Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature. 1995 Sep 14;377(6545):151–155. doi: 10.1038/377151a0. [DOI] [PubMed] [Google Scholar]
  13. McVie-Wylie A. J., Lamson D. R., Chen Y. T. Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: a candidate gene for NIDDM susceptibility. Genomics. 2001 Feb 15;72(1):113–117. doi: 10.1006/geno.2000.6457. [DOI] [PubMed] [Google Scholar]
  14. Mori H., Hashiramoto M., Clark A. E., Yang J., Muraoka A., Tamori Y., Kasuga M., Holman G. D. Substitution of tyrosine 293 of GLUT1 locks the transporter into an outward facing conformation. J Biol Chem. 1994 Apr 15;269(15):11578–11583. [PubMed] [Google Scholar]
  15. Mueckler M., Caruso C., Baldwin S. A., Panico M., Blench I., Morris H. R., Allard W. J., Lienhard G. E., Lodish H. F. Sequence and structure of a human glucose transporter. Science. 1985 Sep 6;229(4717):941–945. doi: 10.1126/science.3839598. [DOI] [PubMed] [Google Scholar]
  16. Mueckler M. Family of glucose-transporter genes. Implications for glucose homeostasis and diabetes. Diabetes. 1990 Jan;39(1):6–11. doi: 10.2337/diacare.39.1.6. [DOI] [PubMed] [Google Scholar]
  17. Mueckler M., Weng W., Kruse M. Glutamine 161 of Glut1 glucose transporter is critical for transport activity and exofacial ligand binding. J Biol Chem. 1994 Aug 12;269(32):20533–20538. [PubMed] [Google Scholar]
  18. Phay J. E., Hussain H. B., Moley J. F. Cloning and expression analysis of a novel member of the facilitative glucose transporter family, SLC2A9 (GLUT9). Genomics. 2000 Jun 1;66(2):217–220. doi: 10.1006/geno.2000.6195. [DOI] [PubMed] [Google Scholar]
  19. Robinson F. W., Blevins T. L., Suzuki K., Kono T. An improved method of reconstitution of adipocyte glucose transport activity. Anal Biochem. 1982 May 1;122(1):10–19. doi: 10.1016/0003-2697(82)90244-5. [DOI] [PubMed] [Google Scholar]
  20. Rosenthal H. E. A graphic method for the determination and presentation of binding parameters in a complex system. Anal Biochem. 1967 Sep;20(3):525–532. doi: 10.1016/0003-2697(67)90297-7. [DOI] [PubMed] [Google Scholar]
  21. Schürmann A., Doege H., Ohnimus H., Monser V., Buchs A., Joost H. G. Role of conserved arginine and glutamate residues on the cytosolic surface of glucose transporters for transporter function. Biochemistry. 1997 Oct 21;36(42):12897–12902. doi: 10.1021/bi971173c. [DOI] [PubMed] [Google Scholar]
  22. Schürmann A., Keller K., Monden I., Brown F. M., Wandel S., Shanahan M. F., Joost H. G. Glucose transport activity and photolabelling with 3-[125I]iodo-4-azidophenethylamido-7-O-succinyldeacetyl (IAPS)-forskolin of two mutants at tryptophan-388 and -412 of the glucose transporter GLUT1: dissociation of the binding domains of forskolin and glucose. Biochem J. 1993 Mar 1;290(Pt 2):497–501. doi: 10.1042/bj2900497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schürmann A., Monden I., Joost H. G., Keller K. Subcellular distribution and activity of glucose transporter isoforms GLUT1 and GLUT4 transiently expressed in COS-7 cells. Biochim Biophys Acta. 1992 Jul 15;1131(3):245–252. doi: 10.1016/0167-4781(92)90022-r. [DOI] [PubMed] [Google Scholar]
  24. Schürmann A., Rosenthal W., Hinsch K. D., Joost H. G. Differential sensitivity to guanine nucleotides of basal and insulin-stimulated glucose transporter activity reconstituted from adipocyte membrane fractions. FEBS Lett. 1989 Sep 25;255(2):259–264. doi: 10.1016/0014-5793(89)81102-0. [DOI] [PubMed] [Google Scholar]
  25. Seatter M. J., De la Rue S. A., Porter L. M., Gould G. W. QLS motif in transmembrane helix VII of the glucose transporter family interacts with the C-1 position of D-glucose and is involved in substrate selection at the exofacial binding site. Biochemistry. 1998 Feb 3;37(5):1322–1326. doi: 10.1021/bi972322u. [DOI] [PubMed] [Google Scholar]
  26. Wandel S., Schürmann A., Becker W., Summers S. A., Shanahan M. F., Joost H. G. Substitution of conserved tyrosine residues in helix 4 (Y143) and 7 (Y293) affects the activity, but not IAPS-forskolin binding, of the glucose transporter GLUT4. FEBS Lett. 1994 Jul 11;348(2):114–118. doi: 10.1016/0014-5793(94)00558-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES