Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Nov 1;359(Pt 3):537–546. doi: 10.1042/0264-6021:3590537

Cladribine induces apoptosis in human leukaemia cells by caspase-dependent and -independent pathways acting on mitochondria.

I Marzo 1, P Pérez-Galán 1, P Giraldo 1, D Rubio-Félix 1, A Anel 1, J Naval 1
PMCID: PMC1222174  PMID: 11672427

Abstract

We have studied the role of caspases and mitochondria in apoptosis induced by 2-chloro-2'-deoxyadenosine (cladribine) in several human leukaemic cell lines. Cladribine treatment induced mitochondrial transmembrane potential (DeltaPsi(m)) loss, phosphatidylserine exposure, caspase activation and development of typical apoptotic morphology in JM1 (pre-B), Jurkat (T) and U937 (promonocytic) cells. Western-blot analysis of cell extracts revealed the activation of at least caspases 3, 6, 8 and 9. Co-treatment with Z-VAD-fmk (benzyloxy-carbonyl-Val-Ala-Asp-fluoromethylketone), a general caspase inhibitor, significantly prevented cladribine-induced death in JM1 and Jurkat cells for the first approximately 40 h, but not for longer times. Z-VAD-fmk also partly prevented some morphological and biochemical features of apoptosis in U937 cells, but not cell death. Co-incubation with selective caspase inhibitors Ac-DEVD-CHO (N-acetyl-Asp-Glu-Val-Asp-aldehyde), Ac-LEHD-CHO (N-acetyl-Leu-Glu-His-Asp-aldehyde) or Z-IETD-fmk (benzyloxycarbonyl-Ile-Glu-Thr-Asp-fluoromethylketone), inhibition of protein synthesis with cycloheximide or cell-cycle arrest with aphidicolin did not prevent cell death. Overexpression of Bcl-2, but not CrmA, efficiently prevented death in Jurkat cells. In all cell lines, death was always preceded by Delta Psi(m) loss and accompanied by the translocation of the protein apoptosis-inducing factor (AIF) from mitochondria to the nucleus. These results suggest that caspases are differentially involved in induction and execution of apoptosis depending on the leukaemic cell lineage. In any case, Delta Psi(m) loss marked the point of no return in apoptosis and may be caused by two different pathways, one caspase-dependent and the other caspase-independent. Execution of apoptosis was always performed after Delta Psi(m) loss by a caspase-9-triggered caspase cascade and the action of AIF.

Full Text

The Full Text of this article is available as a PDF (311.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alley M. C., Scudiero D. A., Monks A., Hursey M. L., Czerwinski M. J., Fine D. L., Abbott B. J., Mayo J. G., Shoemaker R. H., Boyd M. R. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1988 Feb 1;48(3):589–601. [PubMed] [Google Scholar]
  2. Bellosillo B., Villamor N., Colomer D., Pons G., Montserrat E., Gil J. In vitro evaluation of fludarabine in combination with cyclophosphamide and/or mitoxantrone in B-cell chronic lymphocytic leukemia. Blood. 1999 Oct 15;94(8):2836–2843. [PubMed] [Google Scholar]
  3. Beutler E. Cladribine (2-chlorodeoxyadenosine) Lancet. 1992 Oct 17;340(8825):952–956. doi: 10.1016/0140-6736(92)92826-2. [DOI] [PubMed] [Google Scholar]
  4. Bromidge T. J., Turner D. L., Howe D. J., Johnson S. A., Rule S. A. In vitro chemosensitivity of chronic lymphocytic leukaemia to purine analogues--correlation with clinical course. Leukemia. 1998 Aug;12(8):1230–1235. doi: 10.1038/sj.leu.2401095. [DOI] [PubMed] [Google Scholar]
  5. Chandra J., Gilbreath J., Freireich E. J., Kliche K. O., Andreeff M., Keating M., McConkey D. J. Protease activation is required for glucocorticoid-induced apoptosis in chronic lymphocytic leukemic lymphocytes. Blood. 1997 Nov 1;90(9):3673–3681. [PubMed] [Google Scholar]
  6. Chen Q., Gong B., Almasan A. Distinct stages of cytochrome c release from mitochondria: evidence for a feedback amplification loop linking caspase activation to mitochondrial dysfunction in genotoxic stress induced apoptosis. Cell Death Differ. 2000 Feb;7(2):227–233. doi: 10.1038/sj.cdd.4400629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dallaporta B., Marchetti P., de Pablo M. A., Maisse C., Duc H. T., Métivier D., Zamzami N., Geuskens M., Kroemer G. Plasma membrane potential in thymocyte apoptosis. J Immunol. 1999 Jun 1;162(11):6534–6542. [PubMed] [Google Scholar]
  8. Dou Q. P., An B., Antoku K., Johnson D. E. Fas stimulation induces RB dephosphorylation and proteolysis that is blocked by inhibitors of the ICE protease family. J Cell Biochem. 1997 Mar 15;64(4):586–594. [PubMed] [Google Scholar]
  9. Gamen S., Anel A., Lasierra P., Alava M. A., Martinez-Lorenzo M. J., Piñeiro A., Naval J. Doxorubicin-induced apoptosis in human T-cell leukemia is mediated by caspase-3 activation in a Fas-independent way. FEBS Lett. 1997 Nov 17;417(3):360–364. doi: 10.1016/s0014-5793(97)01282-9. [DOI] [PubMed] [Google Scholar]
  10. Gamen S., Anel A., Piñeiro A., Naval J. Caspases are the main executioners of Fas-mediated apoptosis, irrespective of the ceramide signalling pathway. Cell Death Differ. 1998 Mar;5(3):241–249. doi: 10.1038/sj.cdd.4400344. [DOI] [PubMed] [Google Scholar]
  11. Gamen S., Anel A., Pérez-Galán P., Lasierra P., Johnson D., Piñeiro A., Naval J. Doxorubicin treatment activates a Z-VAD-sensitive caspase, which causes deltapsim loss, caspase-9 activity, and apoptosis in Jurkat cells. Exp Cell Res. 2000 Jul 10;258(1):223–235. doi: 10.1006/excr.2000.4924. [DOI] [PubMed] [Google Scholar]
  12. Gamen S., Marzo I., Anel A., Piñeiro A., Naval J. CPP32 inhibition prevents Fas-induced ceramide generation and apoptosis in human cells. FEBS Lett. 1996 Jul 22;390(2):232–237. doi: 10.1016/0014-5793(96)00666-7. [DOI] [PubMed] [Google Scholar]
  13. Genini D., Adachi S., Chao Q., Rose D. W., Carrera C. J., Cottam H. B., Carson D. A., Leoni L. M. Deoxyadenosine analogs induce programmed cell death in chronic lymphocytic leukemia cells by damaging the DNA and by directly affecting the mitochondria. Blood. 2000 Nov 15;96(10):3537–3543. [PubMed] [Google Scholar]
  14. Genini D., Budihardjo I., Plunkett W., Wang X., Carrera C. J., Cottam H. B., Carson D. A., Leoni L. M. Nucleotide requirements for the in vitro activation of the apoptosis protein-activating factor-1-mediated caspase pathway. J Biol Chem. 2000 Jan 7;275(1):29–34. doi: 10.1074/jbc.275.1.29. [DOI] [PubMed] [Google Scholar]
  15. Gong J., Traganos F., Darzynkiewicz Z. A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal Biochem. 1994 May 1;218(2):314–319. doi: 10.1006/abio.1994.1184. [DOI] [PubMed] [Google Scholar]
  16. Gottardi D., De Leo A. M., Alfarano A., Stacchini A., Circosta P., Gregoretti M. G., Bergui L., Aragno M., Caligaris-Cappio F. Fludarabine ability to down-regulate Bcl-2 gene product in CD5+ leukaemic B cells: in vitro/in vivo correlations. Br J Haematol. 1997 Oct;99(1):147–157. doi: 10.1046/j.1365-2141.1997.3353152.x. [DOI] [PubMed] [Google Scholar]
  17. Griffiths M., Beaumont N., Yao S. Y., Sundaram M., Boumah C. E., Davies A., Kwong F. Y., Coe I., Cass C. E., Young J. D. Cloning of a human nucleoside transporter implicated in the cellular uptake of adenosine and chemotherapeutic drugs. Nat Med. 1997 Jan;3(1):89–93. doi: 10.1038/nm0197-89. [DOI] [PubMed] [Google Scholar]
  18. Gross A., Yin X. M., Wang K., Wei M. C., Jockel J., Milliman C., Erdjument-Bromage H., Tempst P., Korsmeyer S. J. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem. 1999 Jan 8;274(2):1156–1163. doi: 10.1074/jbc.274.2.1156. [DOI] [PubMed] [Google Scholar]
  19. Huang P., Plunkett W. Fludarabine- and gemcitabine-induced apoptosis: incorporation of analogs into DNA is a critical event. Cancer Chemother Pharmacol. 1995;36(3):181–188. doi: 10.1007/BF00685844. [DOI] [PubMed] [Google Scholar]
  20. Huang P., Sandoval A., Van Den Neste E., Keating M. J., Plunkett W. Inhibition of RNA transcription: a biochemical mechanism of action against chronic lymphocytic leukemia cells by fludarabine. Leukemia. 2000 Aug;14(8):1405–1413. doi: 10.1038/sj.leu.2401845. [DOI] [PubMed] [Google Scholar]
  21. Kawabata Y., Hirokawa M., Kitabayashi A., Horiuchi T., Kuroki J., Miura A. B. Defective apoptotic signal transduction pathway downstream of caspase-3 in human B-lymphoma cells: A novel mechanism of nuclear apoptosis resistance. Blood. 1999 Nov 15;94(10):3523–3530. [PubMed] [Google Scholar]
  22. Kitada S., Andersen J., Akar S., Zapata J. M., Takayama S., Krajewski S., Wang H. G., Zhang X., Bullrich F., Croce C. M. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with In vitro and In vivo chemoresponses. Blood. 1998 May 1;91(9):3379–3389. [PubMed] [Google Scholar]
  23. Lazebnik Y. A., Takahashi A., Moir R. D., Goldman R. D., Poirier G. G., Kaufmann S. H., Earnshaw W. C. Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9042–9046. doi: 10.1073/pnas.92.20.9042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Leoni L. M., Chao Q., Cottam H. B., Genini D., Rosenbach M., Carrera C. J., Budihardjo I., Wang X., Carson D. A. Induction of an apoptotic program in cell-free extracts by 2-chloro-2'-deoxyadenosine 5'-triphosphate and cytochrome c. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9567–9571. doi: 10.1073/pnas.95.16.9567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Liliemark J., Martinsson U., Cavallin-Ståhl E., Svedmyr E., Porwit A., Strömberg M., Juliusson G. Cladribine for untreated or early low-grade non-Hodgkin's lymphoma. Leuk Lymphoma. 1998 Aug;30(5-6):573–581. doi: 10.3109/10428199809057569. [DOI] [PubMed] [Google Scholar]
  26. MacFarlane M., Cain K., Sun X. M., Alnemri E. S., Cohen G. M. Processing/activation of at least four interleukin-1beta converting enzyme-like proteases occurs during the execution phase of apoptosis in human monocytic tumor cells. J Cell Biol. 1997 Apr 21;137(2):469–479. doi: 10.1083/jcb.137.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marzo I., Brenner C., Zamzami N., Susin S. A., Beutner G., Brdiczka D., Rémy R., Xie Z. H., Reed J. C., Kroemer G. The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med. 1998 Apr 20;187(8):1261–1271. doi: 10.1084/jem.187.8.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Marzo I., Susin S. A., Petit P. X., Ravagnan L., Brenner C., Larochette N., Zamzami N., Kroemer G. Caspases disrupt mitochondrial membrane barrier function. FEBS Lett. 1998 May 8;427(2):198–202. doi: 10.1016/s0014-5793(98)00424-4. [DOI] [PubMed] [Google Scholar]
  29. McCarthy N. J., Whyte M. K., Gilbert C. S., Evan G. I. Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J Cell Biol. 1997 Jan 13;136(1):215–227. doi: 10.1083/jcb.136.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nomura Y., Inanami O., Takahashi K., Matsuda A., Kuwabara M. 2-Chloro-2'-deoxyadenosine induces apoptosis through the Fas/Fas ligand pathway in human leukemia cell line MOLT-4. Leukemia. 2000 Feb;14(2):299–306. doi: 10.1038/sj.leu.2401649. [DOI] [PubMed] [Google Scholar]
  31. Parker W. B., Bapat A. R., Shen J. X., Townsend A. J., Cheng Y. C. Interaction of 2-halogenated dATP analogs (F, Cl, and Br) with human DNA polymerases, DNA primase, and ribonucleotide reductase. Mol Pharmacol. 1988 Oct;34(4):485–491. [PubMed] [Google Scholar]
  32. Perkins C., Kim C. N., Fang G., Bhalla K. N. Overexpression of Apaf-1 promotes apoptosis of untreated and paclitaxel- or etoposide-treated HL-60 cells. Cancer Res. 1998 Oct 15;58(20):4561–4566. [PubMed] [Google Scholar]
  33. Petit P. X., Lecoeur H., Zorn E., Dauguet C., Mignotte B., Gougeon M. L. Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J Cell Biol. 1995 Jul;130(1):157–167. doi: 10.1083/jcb.130.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pettitt A. R., Cawley J. C. Caspases influence the mode but not the extent of cell death induced by purine analogues in chronic lymphocytic leukaemia. Br J Haematol. 2000 Jun;109(4):800–804. doi: 10.1046/j.1365-2141.2000.02068.x. [DOI] [PubMed] [Google Scholar]
  35. Pettitt A. R., Clarke A. R., Cawley J. C., Griffiths S. D. Purine analogues kill resting lymphocytes by p53-dependent and -independent mechanisms. Br J Haematol. 1999 Jun;105(4):986–988. doi: 10.1046/j.1365-2141.1999.01448.x. [DOI] [PubMed] [Google Scholar]
  36. Piro L. D., Carrera C. J., Beutler E., Carson D. A. 2-Chlorodeoxyadenosine: an effective new agent for the treatment of chronic lymphocytic leukemia. Blood. 1988 Sep;72(3):1069–1073. [PubMed] [Google Scholar]
  37. Richardson D. S., Allen P. D., Kelsey S. M., Newland A. C. Inhibition of FAS/FAS-ligand does not block chemotherapy-induced apoptosis in drug sensitive and resistant cells. Adv Exp Med Biol. 1999;457:259–266. doi: 10.1007/978-1-4615-4811-9_28. [DOI] [PubMed] [Google Scholar]
  38. Rottenberg H., Wu S. Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells. Biochim Biophys Acta. 1998 Sep 16;1404(3):393–404. doi: 10.1016/s0167-4889(98)00088-3. [DOI] [PubMed] [Google Scholar]
  39. Sfikakis P. P., Dimopoulos M. A., Souliotis V. L., Charalambopoulos D., Mavrikakis M., Panayiotidis P. Effects of 2-chlorodeoxyadenosine and gold sodium thiomalate on human bcl-2 gene expression. Immunopharmacol Immunotoxicol. 1998 Feb;20(1):63–77. doi: 10.3109/08923979809034809. [DOI] [PubMed] [Google Scholar]
  40. Slee E. A., Zhu H., Chow S. C., MacFarlane M., Nicholson D. W., Cohen G. M. Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD.FMK) inhibits apoptosis by blocking the processing of CPP32. Biochem J. 1996 Apr 1;315(Pt 1):21–24. doi: 10.1042/bj3150021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sun X. M., MacFarlane M., Zhuang J., Wolf B. B., Green D. R., Cohen G. M. Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J Biol Chem. 1999 Feb 19;274(8):5053–5060. doi: 10.1074/jbc.274.8.5053. [DOI] [PubMed] [Google Scholar]
  42. Susin S. A., Daugas E., Ravagnan L., Samejima K., Zamzami N., Loeffler M., Costantini P., Ferri K. F., Irinopoulou T., Prévost M. C. Two distinct pathways leading to nuclear apoptosis. J Exp Med. 2000 Aug 21;192(4):571–580. doi: 10.1084/jem.192.4.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Susin S. A., Lorenzo H. K., Zamzami N., Marzo I., Snow B. E., Brothers G. M., Mangion J., Jacotot E., Costantini P., Loeffler M. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999 Feb 4;397(6718):441–446. doi: 10.1038/17135. [DOI] [PubMed] [Google Scholar]
  44. Villunger A., Egle A., Kos M., Hartmann B. L., Geley S., Kofler R., Greil R. Drug-induced apoptosis is associated with enhanced Fas (Apo-1/CD95) ligand expression but occurs independently of Fas (Apo-1/CD95) signaling in human T-acute lymphatic leukemia cells. Cancer Res. 1997 Aug 15;57(16):3331–3334. [PubMed] [Google Scholar]
  45. Wang L., Karlsson A., Arnér E. S., Eriksson S. Substrate specificity of mitochondrial 2'-deoxyguanosine kinase. Efficient phosphorylation of 2-chlorodeoxyadenosine. J Biol Chem. 1993 Oct 25;268(30):22847–22852. [PubMed] [Google Scholar]
  46. Wang Z., Van Tuyle G., Conrad D., Fisher P. B., Dent P., Grant S. Dysregulation of the cyclin-dependent kinase inhibitor p21WAF1/CIP1/MDA6 increases the susceptibility of human leukemia cells (U937) to 1-beta-D-arabinofuranosylcytosine-mediated mitochondrial dysfunction and apoptosis. Cancer Res. 1999 Mar 15;59(6):1259–1267. [PubMed] [Google Scholar]
  47. Zhou P., Qian L., Kozopas K. M., Craig R. W. Mcl-1, a Bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions. Blood. 1997 Jan 15;89(2):630–643. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES