Abstract
The aim of the present study was to identify the functional domains of the upstream region of the rabbit whey acidic protein (WAP) gene, which has been used with considerable efficacy to target the expression of several foreign genes to the mammary gland. We have shown that this region exhibits three sites hypersensitive to DNase I digestion in the lactating mammary gland, and that all three sites harbour elements which can bind to Stat5 in vitro in bandshift assays. However, not all hypersensitive regions are detected at all stages from pregnancy to weaning, and the level of activated Stat5 detected in the rabbit mammary gland is low except during lactation. We have studied the role of the distal site, which is only detected during lactation, in further detail. It is located within a 849 bp region that is required to induce a strong expression of the chloramphenicol acetyltransferase reporter gene in transfected mammary cells. Taken together, these results suggest that this region, centred around a Stat5-binding site and surrounded by a variable chromatin structure during the pregnancy-lactation cycle, may play a key role in regulating the expression of this gene in vivo. Furthermore, this distal region exhibits sequence similarity with a region located around 3 kb upstream of the mouse WAP gene. The existence of such a distal region in the mouse WAP gene may explain the differences in expression between 4.1 and 2.1 kb mouse WAP constructs.
Full Text
The Full Text of this article is available as a PDF (300.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguirre A., Castro-Palomino N., De la Fuente J., Ovidio Castro F. O. Expression of human erythropoietin transgenes and of the endogenous WAP gene in the mammary gland of transgenic rabbits during gestation and lactation. Transgenic Res. 1998 Jul;7(4):311–317. doi: 10.1023/a:1008882332133. [DOI] [PubMed] [Google Scholar]
- Beg O. U., von Bahr-Lindström H., Zaidi Z. H., Jörnvall H. A camel milk whey protein rich in half-cystine. Primary structure, assessment of variations, internal repeat patterns, and relationships with neurophysin and other active polypeptides. Eur J Biochem. 1986 Aug 15;159(1):195–201. doi: 10.1111/j.1432-1033.1986.tb09852.x. [DOI] [PubMed] [Google Scholar]
- Burdon T. G., Maitland K. A., Clark A. J., Wallace R., Watson C. J. Regulation of the sheep beta-lactoglobulin gene by lactogenic hormones is mediated by a transcription factor that binds an interferon-gamma activation site-related element. Mol Endocrinol. 1994 Nov;8(11):1528–1536. doi: 10.1210/mend.8.11.7877621. [DOI] [PubMed] [Google Scholar]
- Christa L., Pauloin A., Simon M. T., Stinnakre M. G., Fontaine M. L., Delpal S., Ollivier-Bousquet M., Bréchot C., Devinoy E. High expression of the human hepatocarcinoma-intestine-pancreas/pancreatic-associated protein (HIP/PAP) gene in the mammary gland of lactating transgenic mice. Secretion into the milk and purification of the HIP/PAP lectin. Eur J Biochem. 2000 Mar;267(6):1665–1671. doi: 10.1046/j.1432-1327.2000.01159.x. [DOI] [PubMed] [Google Scholar]
- Devinoy E., Maliénou-N'Gassa R., Thépot D., Puissant C., Houdebine L. M. Hormone responsive elements within the upstream sequences of the rabbit whey acidic protein (WAP) gene direct chloramphenicol acetyl transferase (CAT) reporter gene expression in transfected rabbit mammary cells. Mol Cell Endocrinol. 1991 Oct;81(1-3):185–193. doi: 10.1016/0303-7207(91)90217-g. [DOI] [PubMed] [Google Scholar]
- Doppler W., Villunger A., Jennewein P., Brduscha K., Groner B., Ball R. K. Lactogenic hormone and cell type-specific control of the whey acidic protein gene promoter in transfected mouse cells. Mol Endocrinol. 1991 Nov;5(11):1624–1632. doi: 10.1210/mend-5-11-1624. [DOI] [PubMed] [Google Scholar]
- Durand P., Djiane J. Lactogenic activity in the serum of rabbits during pregnancy and early lactation. J Endocrinol. 1977 Oct;75(1):33–42. doi: 10.1677/joe.0.0750033. [DOI] [PubMed] [Google Scholar]
- Espinás M. L., Roux J., Ghysdael J., Pictet R., Grange T. Participation of Ets transcription factors in the glucocorticoid response of the rat tyrosine aminotransferase gene. Mol Cell Biol. 1994 Jun;14(6):4116–4125. doi: 10.1128/mcb.14.6.4116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grabowski H., Le Bars D., Chene N., Attal J., Malienou-Ngassa R., Puissant C., Houdebine L. M. Rabbit whey acidic protein concentration in milk, serum, mammary gland extract, and culture medium. J Dairy Sci. 1991 Dec;74(12):4143–4150. doi: 10.3168/jds.S0022-0302(91)78609-8. [DOI] [PubMed] [Google Scholar]
- Hennighausen L. G., Sippel A. E. Mouse whey acidic protein is a novel member of the family of 'four-disulfide core' proteins. Nucleic Acids Res. 1982 Apr 24;10(8):2677–2684. doi: 10.1093/nar/10.8.2677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houdebine L. M. Role of prolactin the the expression of casein genes in the virgin rabbit. Cell Differ. 1979 Feb;8(1):49–59. doi: 10.1016/0045-6039(79)90017-4. [DOI] [PubMed] [Google Scholar]
- Kazansky A. V., Raught B., Lindsey S. M., Wang Y. F., Rosen J. M. Regulation of mammary gland factor/Stat5a during mammary gland development. Mol Endocrinol. 1995 Nov;9(11):1598–1609. doi: 10.1210/mend.9.11.8584036. [DOI] [PubMed] [Google Scholar]
- Krnacik M. J., Li S., Liao J., Rosen J. M. Position-independent expression of whey acidic protein transgenes. J Biol Chem. 1995 May 12;270(19):11119–11129. doi: 10.1074/jbc.270.19.11119. [DOI] [PubMed] [Google Scholar]
- Li S., Rosen J. M. Glucocorticoid regulation of rat whey acidic protein gene expression involves hormone-induced alterations of chromatin structure in the distal promoter region. Mol Endocrinol. 1994 Oct;8(10):1328–1335. doi: 10.1210/mend.8.10.7854350. [DOI] [PubMed] [Google Scholar]
- Li S., Rosen J. M. Nuclear factor I and mammary gland factor (STAT5) play a critical role in regulating rat whey acidic protein gene expression in transgenic mice. Mol Cell Biol. 1995 Apr;15(4):2063–2070. doi: 10.1128/mcb.15.4.2063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luo D., Guérin E., Ludwig M. G., Stoll I., Basset P., Anglard P. Transcriptional induction of stromelysin-3 in mesodermal cells is mediated by an upstream CCAAT/enhancer-binding protein element associated with a DNase I-hypersensitive site. J Biol Chem. 1999 Dec 24;274(52):37177–37185. doi: 10.1074/jbc.274.52.37177. [DOI] [PubMed] [Google Scholar]
- McKnight R. A., Spencer M., Dittmer J., Brady J. N., Wall R. J., Hennighausen L. An Ets site in the whey acidic protein gene promoter mediates transcriptional activation in the mammary gland of pregnant mice but is dispensable during lactation. Mol Endocrinol. 1995 Jun;9(6):717–724. doi: 10.1210/mend.9.6.8592517. [DOI] [PubMed] [Google Scholar]
- Paleyanda R. K., Zhang D. W., Hennighausen L., McKnight R. A., Lubon H. Regulation of human protein C gene expression by the mouse WAP promoter. Transgenic Res. 1994 Nov;3(6):335–343. doi: 10.1007/BF01976765. [DOI] [PubMed] [Google Scholar]
- Pierre S., Jolivet G., Devinoy E., Houdebine L. M. A combination of distal and proximal regions is required for efficient prolactin regulation of transfected rabbit alpha s1-casein chloramphenicol acetyltransferase constructs. Mol Endocrinol. 1994 Dec;8(12):1720–1730. doi: 10.1210/mend.8.12.7677833. [DOI] [PubMed] [Google Scholar]
- Puissant C., Bayat-Sarmadi M., Devinoy E., Houdebine L. M. Variation of transferrin mRNA concentration in the rabbit mammary gland during the pregnancy-lactation-weaning cycle and in cultured mammary cells. A comparison with the other major milk protein mRNAs. Eur J Endocrinol. 1994 May;130(5):522–529. doi: 10.1530/eje.0.1300522. [DOI] [PubMed] [Google Scholar]
- Rogel-Gaillard C., Zijlstra C., Bosma A. A., Thépot D., Fontaine M. L., Devinoy E., Chardon P. Assignment of the rabbit whey acidic protein gene (WAP) to rabbit chromosome 10 by in situ hybridization and description of a large region surrounding this gene. Cytogenet Cell Genet. 2000;89(1-2):107–109. doi: 10.1159/000015586. [DOI] [PubMed] [Google Scholar]
- Rollini P., Fournier R. E. Differential regulation of gene activity and chromatin structure within the human serpin gene cluster at 14q32.1 in macrophage microcell hybrids. Nucleic Acids Res. 2000 Apr 15;28(8):1767–1777. doi: 10.1093/nar/28.8.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmitt-Ney M., Happ B., Ball R. K., Groner B. Developmental and environmental regulation of a mammary gland-specific nuclear factor essential for transcription of the gene encoding beta-casein. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3130–3134. doi: 10.1073/pnas.89.7.3130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simpson K. J., Ranganathan S., Fisher J. A., Janssens P. A., Shaw D. C., Nicholas K. R. The gene for a novel member of the whey acidic protein family encodes three four-disulfide core domains and is asynchronously expressed during lactation. J Biol Chem. 2000 Jul 28;275(30):23074–23081. doi: 10.1074/jbc.M002161200. [DOI] [PubMed] [Google Scholar]
- Song D. H., Sussman D. J., Seldin D. C. Endogenous protein kinase CK2 participates in Wnt signaling in mammary epithelial cells. J Biol Chem. 2000 Aug 4;275(31):23790–23797. doi: 10.1074/jbc.M909107199. [DOI] [PubMed] [Google Scholar]
- Thépot D., Devinoy E., Fontaine M. L., Stinnakre M. G., Massoud M., Kann G., Houdebine L. M. Rabbit whey acidic protein gene upstream region controls high-level expression of bovine growth hormone in the mammary gland of transgenic mice. Mol Reprod Dev. 1995 Nov;42(3):261–267. doi: 10.1002/mrd.1080420302. [DOI] [PubMed] [Google Scholar]
- Wei Y., Yarus S., Greenberg N. M., Whitsett J., Rosen J. M. Production of human surfactant protein C in milk of transgenic mice. Transgenic Res. 1995 Jul;4(4):232–240. doi: 10.1007/BF01969116. [DOI] [PubMed] [Google Scholar]
- Welte T., Garimorth K., Philipp S., Jennewein P., Huck C., Cato A. C., Doppler W. Involvement of Ets-related proteins in hormone-independent mammary cell-specific gene expression. Eur J Biochem. 1994 Aug 1;223(3):997–1006. doi: 10.1111/j.1432-1033.1994.tb19078.x. [DOI] [PubMed] [Google Scholar]
- Welte T., Philipp S., Cairns C., Gustafsson J. A., Doppler W. Glucocorticoid receptor binding sites in the promoter region of milk protein genes. J Steroid Biochem Mol Biol. 1993 Dec;47(1-6):75–81. doi: 10.1016/0960-0760(93)90059-6. [DOI] [PubMed] [Google Scholar]
- Whitelaw C. B. Regulation of ovine beta-lactoglobulin gene expression during the first stage of lactogenesis. Biochem Biophys Res Commun. 1995 Apr 26;209(3):1089–1093. doi: 10.1006/bbrc.1995.1609. [DOI] [PubMed] [Google Scholar]
- Whitelaw C. B., Webster J. Temporal profiles of appearance of DNase I hypersensitive sites associated with the ovine beta-lactoglobulin gene differ in sheep and transgenic mice. Mol Gen Genet. 1998 Apr;257(6):649–654. doi: 10.1007/s004380050693. [DOI] [PubMed] [Google Scholar]