Abstract
Four ferritin genes are found within the complete sequence of the Arabidopsis thaliana genome. All of them are expressed and their corresponding cDNA species have been cloned. The polypeptide sequences deduced from these four genes confirm all the properties of the ferritin subunits described so far, non-exhaustively, from various plant species. All are predicted to be targeted to the plastids, which is consistent with the existence of a putative transit peptide at their N-terminal extremity. They also all possess a conserved extension peptide in the mature subunit. Specific residues for ferroxidase activity and iron nucleation, which are found respectively in H-type or L-type ferritin subunits in animals, are both conserved within each of the four A. thaliana ferritin polypeptides. In addition, the hydrophilic nature of the plant ferritin E-helix is conserved in the four A. thaliana ferritin subunits. Besides this strong structural conservation, the four genes are differentially expressed in response to various environmental signals, and during the course of plant growth and development. AtFer1 and AtFer3 are the two major genes expressed in response to treatment with an iron overload. Under our experimental conditions, AtFer4 is expressed with different kinetics and AtFer2 is not responsive to iron. H(2)O(2) activates the expression of AtFer1 and, to a smaller extent, AtFer3. Abscisic acid promotes the expression of only AtFer2, which is consistent with the observation that this is the only gene of the four to be expressed in seeds, whereas AtFer1, AtFer4 and AtFer3 are expressed in various vegetative organs but not in seeds.
Full Text
The Full Text of this article is available as a PDF (259.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Briat J. F., Lobréaux S., Grignon N., Vansuyt G. Regulation of plant ferritin synthesis: how and why. Cell Mol Life Sci. 1999 Oct 1;56(1-2):155–166. doi: 10.1007/s000180050014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruce B. D. Chloroplast transit peptides: structure, function and evolution. Trends Cell Biol. 2000 Oct;10(10):440–447. doi: 10.1016/s0962-8924(00)01833-x. [DOI] [PubMed] [Google Scholar]
- Buchanan-Wollaston V., Ainsworth C. Leaf senescence in Brassica napus: cloning of senescence related genes by subtractive hybridisation. Plant Mol Biol. 1997 Mar;33(5):821–834. doi: 10.1023/a:1005774212410. [DOI] [PubMed] [Google Scholar]
- Chen W., Singh K. B. The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J. 1999 Sep;19(6):667–677. doi: 10.1046/j.1365-313x.1999.00560.x. [DOI] [PubMed] [Google Scholar]
- Emanuelsson O., Nielsen H., von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 1999 May;8(5):978–984. doi: 10.1110/ps.8.5.978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fobis-Loisy I., Loridon K., Lobréaux S., Lebrun M., Briat J. F. Structure and differential expression of two maize ferritin genes in response to iron and abscisic acid. Eur J Biochem. 1995 Aug 1;231(3):609–619. doi: 10.1111/j.1432-1033.1995.tb20739.x. [DOI] [PubMed] [Google Scholar]
- Gaymard F., Boucherez J., Briat J. F. Characterization of a ferritin mRNA from Arabidopsis thaliana accumulated in response to iron through an oxidative pathway independent of abscisic acid. Biochem J. 1996 Aug 15;318(Pt 1):67–73. doi: 10.1042/bj3180067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibeaut D. M., Hulett J., Cramer G. R., Seemann J. R. Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions. Plant Physiol. 1997 Oct;115(2):317–319. doi: 10.1104/pp.115.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison P. M., Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996 Jul 31;1275(3):161–203. doi: 10.1016/0005-2728(96)00022-9. [DOI] [PubMed] [Google Scholar]
- Hentze M. W., Kühn L. C. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8175–8182. doi: 10.1073/pnas.93.16.8175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klausner R. D., Rouault T. A., Harford J. B. Regulating the fate of mRNA: the control of cellular iron metabolism. Cell. 1993 Jan 15;72(1):19–28. doi: 10.1016/0092-8674(93)90046-s. [DOI] [PubMed] [Google Scholar]
- Lescure A. M., Proudhon D., Pesey H., Ragland M., Theil E. C., Briat J. F. Ferritin gene transcription is regulated by iron in soybean cell cultures. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8222–8226. doi: 10.1073/pnas.88.18.8222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lobreaux S., Briat J. F. Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development. Biochem J. 1991 Mar 1;274(Pt 2):601–606. doi: 10.1042/bj2740601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lobreaux S., Massenet O., Briat J. F. Iron induces ferritin synthesis in maize plantlets. Plant Mol Biol. 1992 Jul;19(4):563–575. doi: 10.1007/BF00026783. [DOI] [PubMed] [Google Scholar]
- Lobreaux S., Yewdall S. J., Briat J. F., Harrison P. M. Amino-acid sequence and predicted three-dimensional structure of pea seed (Pisum sativum) ferritin. Biochem J. 1992 Dec 15;288(Pt 3):931–939. doi: 10.1042/bj2880931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lång V., Palva E. T. The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol Biol. 1992 Dec;20(5):951–962. doi: 10.1007/BF00027165. [DOI] [PubMed] [Google Scholar]
- Menkens A. E., Schindler U., Cashmore A. R. The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem Sci. 1995 Dec;20(12):506–510. doi: 10.1016/s0968-0004(00)89118-5. [DOI] [PubMed] [Google Scholar]
- Minet M., Dufour M. E., Lacroute F. Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. Plant J. 1992 May;2(3):417–422. doi: 10.1111/j.1365-313x.1992.00417.x. [DOI] [PubMed] [Google Scholar]
- Petit J. M., van Wuytswinkel O., Briat J. F., Lobréaux S. Characterization of an iron-dependent regulatory sequence involved in the transcriptional control of AtFer1 and ZmFer1 plant ferritin genes by iron. J Biol Chem. 2000 Nov 22;276(8):5584–5590. doi: 10.1074/jbc.M005903200. [DOI] [PubMed] [Google Scholar]
- Proudhon D., Wei J., Briat J., Theil E. C. Ferritin gene organization: differences between plants and animals suggest possible kingdom-specific selective constraints. J Mol Evol. 1996 Mar;42(3):325–336. doi: 10.1007/BF02337543. [DOI] [PubMed] [Google Scholar]
- Savino G., Briat J. F., Lobréaux S. Inhibition of the iron-induced ZmFer1 maize ferritin gene expression by antioxidants and serine/threonine phosphatase inhibitors. J Biol Chem. 1997 Dec 26;272(52):33319–33326. doi: 10.1074/jbc.272.52.33319. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang M. L., Belmonte S., Kim U., Dolan M., Morris J. W., Goodman H. M. A cluster of ABA-regulated genes on Arabidopsis thaliana BAC T07M07. Genome Res. 1999 Apr;9(4):325–333. [PubMed] [Google Scholar]
- Wardrop A. J., Wicks R. E., Entsch B. Occurrence and expression of members of the ferritin gene family in cowpeas. Biochem J. 1999 Feb 1;337(Pt 3):523–530. [PMC free article] [PubMed] [Google Scholar]
- Wei J., Theil E. C. Identification and characterization of the iron regulatory element in the ferritin gene of a plant (soybean). J Biol Chem. 2000 Jun 9;275(23):17488–17493. doi: 10.1074/jbc.M910334199. [DOI] [PubMed] [Google Scholar]
- White K., Munro H. N. Induction of ferritin subunit synthesis by iron is regulated at both the transcriptional and translational levels. J Biol Chem. 1988 Jun 25;263(18):8938–8942. [PubMed] [Google Scholar]
- Wobus U., Weber H. Seed maturation: genetic programmes and control signals. Curr Opin Plant Biol. 1999 Feb;2(1):33–38. doi: 10.1016/s1369-5266(99)80007-7. [DOI] [PubMed] [Google Scholar]
- van Wuytswinkel O., Briat J. F. Conformational changes and in vitro core-formation modifications induced by site-directed mutagenesis of the specific N-terminus of pea seed ferritin. Biochem J. 1995 Feb 1;305(Pt 3):959–965. doi: 10.1042/bj3050959. [DOI] [PMC free article] [PubMed] [Google Scholar]
