Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Nov 1;359(Pt 3):583–589. doi: 10.1042/0264-6021:3590583

AtPIP5K1, an Arabidopsis thaliana phosphatidylinositol phosphate kinase, synthesizes PtdIns(3,4)P(2) and PtdIns(4,5)P(2) in vitro and is inhibited by phosphorylation.

T Westergren 1, S K Dove 1, M Sommarin 1, C Pical 1
PMCID: PMC1222179  PMID: 11672432

Abstract

PtdIns phosphate kinases (PIPkins), which generate PtdInsP(2) isomers, have been classified into three subfamilies that differ in their substrate specificities. We demonstrate here that the previously identified AtPIP5K1 gene from Arabidopsis thaliana encodes a PIPkin with dual substrate specificity in vitro, capable of phosphorylating PtdIns3P and PtdIns4P to PtdIns(3,4)P(2) and PtdIns(4,5)P(2) respectively. We also show that recombinant AtPIP5K1 is phosphorylated by protein kinase A and a soluble protein kinase from A. thaliana. Phosphorylation of AtPIP5K1 by protein kinase A is accompanied by a 40% inhibition of its catalytic activity. Full activity is recovered by treating phosphorylated AtPIP5K1 with alkaline phosphatase.

Full Text

The Full Text of this article is available as a PDF (277.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banfić H., Downes C. P., Rittenhouse S. E. Biphasic activation of PKBalpha/Akt in platelets. Evidence for stimulation both by phosphatidylinositol 3,4-bisphosphate, produced via a novel pathway, and by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998 May 8;273(19):11630–11637. doi: 10.1074/jbc.273.19.11630. [DOI] [PubMed] [Google Scholar]
  2. Bearden J. C., Jr Quantitation of submicrogram quantities of protein by an improved protein-dye binding assay. Biochim Biophys Acta. 1978 Apr 26;533(2):525–529. doi: 10.1016/0005-2795(78)90398-7. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  4. Blatt M. R., Thiel G., Trentham D. R. Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-trisphosphate. Nature. 1990 Aug 23;346(6286):766–769. doi: 10.1038/346766a0. [DOI] [PubMed] [Google Scholar]
  5. Brearley C. A., Hanke D. E. Pathway of synthesis of 3,4- and 4,5-phosphorylated phosphatidylinositols in the duckweed Spirodela polyrhiza L. Biochem J. 1993 Feb 15;290(Pt 1):145–150. doi: 10.1042/bj2900145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bunney T. D., Watkins P. A., Beven A. F., Shaw P. J., Hernandez L. E., Lomonossoff G. P., Shanks M., Peart J., Drobak B. K. Association of phosphatidylinositol 3-kinase with nuclear transcription sites in higher plants. Plant Cell. 2000 Sep;12(9):1679–1688. doi: 10.1105/tpc.12.9.1679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carpenter C. L., Cantley L. C. Phosphoinositide kinases. Curr Opin Cell Biol. 1996 Apr;8(2):153–158. doi: 10.1016/s0955-0674(96)80060-3. [DOI] [PubMed] [Google Scholar]
  8. Chang K. J., Marcus N. A., Cuatrecasas P. Cyclic adenosine monophosphate-dependent phosphorylation of specific fat cell membrane proteins by an endogenous membrane-bound protein kinase. Possible involvement in the regulation of insulin-stimulated glucose transport. J Biol Chem. 1974 Nov 10;249(21):6854–6865. [PubMed] [Google Scholar]
  9. Cooke F. T., Dove S. K., McEwen R. K., Painter G., Holmes A. B., Hall M. N., Michell R. H., Parker P. J. The stress-activated phosphatidylinositol 3-phosphate 5-kinase Fab1p is essential for vacuole function in S. cerevisiae. Curr Biol. 1998 Nov 5;8(22):1219–1222. doi: 10.1016/s0960-9822(07)00513-1. [DOI] [PubMed] [Google Scholar]
  10. De Camilli P., Emr S. D., McPherson P. S., Novick P. Phosphoinositides as regulators in membrane traffic. Science. 1996 Mar 15;271(5255):1533–1539. doi: 10.1126/science.271.5255.1533. [DOI] [PubMed] [Google Scholar]
  11. DeWald D. B., Torabinejad J., Jones C. A., Shope J. C., Cangelosi A. R., Thompson J. E., Prestwich G. D., Hama H. Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed arabidopsis. Plant Physiol. 2001 Jun;126(2):759–769. doi: 10.1104/pp.126.2.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Desrivières S., Cooke F. T., Parker P. J., Hall M. N. MSS4, a phosphatidylinositol-4-phosphate 5-kinase required for organization of the actin cytoskeleton in Saccharomyces cerevisiae. J Biol Chem. 1998 Jun 19;273(25):15787–15793. doi: 10.1074/jbc.273.25.15787. [DOI] [PubMed] [Google Scholar]
  13. Dove S. K., Cooke F. T., Douglas M. R., Sayers L. G., Parker P. J., Michell R. H. Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature. 1997 Nov 13;390(6656):187–192. doi: 10.1038/36613. [DOI] [PubMed] [Google Scholar]
  14. Ford M. G., Pearse B. M., Higgins M. K., Vallis Y., Owen D. J., Gibson A., Hopkins C. R., Evans P. R., McMahon H. T. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science. 2001 Feb 9;291(5506):1051–1055. doi: 10.1126/science.291.5506.1051. [DOI] [PubMed] [Google Scholar]
  15. Gilroy S., Read N. D., Trewavas A. J. Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature. 1990 Aug 23;346(6286):769–771. doi: 10.1038/346769a0. [DOI] [PubMed] [Google Scholar]
  16. Hinchliffe K. A., Ciruela A., Irvine R. F. PIPkins1, their substrates and their products: new functions for old enzymes. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):87–104. doi: 10.1016/s0005-2760(98)00140-4. [DOI] [PubMed] [Google Scholar]
  17. Hong Z., Verma D. P. A phosphatidylinositol 3-kinase is induced during soybean nodule organogenesis and is associated with membrane proliferation. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9617–9621. doi: 10.1073/pnas.91.20.9617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Itoh T., Koshiba S., Kigawa T., Kikuchi A., Yokoyama S., Takenawa T. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science. 2001 Feb 9;291(5506):1047–1051. doi: 10.1126/science.291.5506.1047. [DOI] [PubMed] [Google Scholar]
  19. Kost B., Lemichez E., Spielhofer P., Hong Y., Tolias K., Carpenter C., Chua N. H. Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol. 1999 Apr 19;145(2):317–330. doi: 10.1083/jcb.145.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. McEwen R. K., Dove S. K., Cooke F. T., Painter G. F., Holmes A. B., Shisheva A., Ohya Y., Parker P. J., Michell R. H. Complementation analysis in PtdInsP kinase-deficient yeast mutants demonstrates that Schizosaccharomyces pombe and murine Fab1p homologues are phosphatidylinositol 3-phosphate 5-kinases. J Biol Chem. 1999 Nov 26;274(48):33905–33912. doi: 10.1074/jbc.274.48.33905. [DOI] [PubMed] [Google Scholar]
  22. Mikami K., Katagiri T., Iuchi S., Yamaguchi-Shinozaki K., Shinozaki K. A gene encoding phosphatidylinositol-4-phosphate 5-kinase is induced by water stress and abscisic acid in Arabidopsis thaliana. Plant J. 1998 Aug;15(4):563–568. doi: 10.1046/j.1365-313x.1998.00227.x. [DOI] [PubMed] [Google Scholar]
  23. Park S. J., Itoh T., Takenawa T. Phosphatidylinositol 4-phosphate 5-kinase type I is regulated through phosphorylation response by extracellular stimuli. J Biol Chem. 2000 Nov 21;276(7):4781–4787. doi: 10.1074/jbc.M010177200. [DOI] [PubMed] [Google Scholar]
  24. Pical C., Westergren T., Dove S. K., Larsson C., Sommarin M. Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells. J Biol Chem. 1999 Dec 31;274(53):38232–38240. doi: 10.1074/jbc.274.53.38232. [DOI] [PubMed] [Google Scholar]
  25. Rameh L. E., Tolias K. F., Duckworth B. C., Cantley L. C. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature. 1997 Nov 13;390(6656):192–196. doi: 10.1038/36621. [DOI] [PubMed] [Google Scholar]
  26. Toker A. The synthesis and cellular roles of phosphatidylinositol 4,5-bisphosphate. Curr Opin Cell Biol. 1998 Apr;10(2):254–261. doi: 10.1016/s0955-0674(98)80148-8. [DOI] [PubMed] [Google Scholar]
  27. Tolias K. F., Rameh L. E., Ishihara H., Shibasaki Y., Chen J., Prestwich G. D., Cantley L. C., Carpenter C. L. Type I phosphatidylinositol-4-phosphate 5-kinases synthesize the novel lipids phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 5-phosphate. J Biol Chem. 1998 Jul 17;273(29):18040–18046. doi: 10.1074/jbc.273.29.18040. [DOI] [PubMed] [Google Scholar]
  28. Vancurova I., Choi J. H., Lin H., Kuret J., Vancura A. Regulation of phosphatidylinositol 4-phosphate 5-kinase from Schizosaccharomyces pombe by casein kinase I. J Biol Chem. 1999 Jan 8;274(2):1147–1155. doi: 10.1074/jbc.274.2.1147. [DOI] [PubMed] [Google Scholar]
  29. Vanhaesebroeck B., Waterfield M. D. Signaling by distinct classes of phosphoinositide 3-kinases. Exp Cell Res. 1999 Nov 25;253(1):239–254. doi: 10.1006/excr.1999.4701. [DOI] [PubMed] [Google Scholar]
  30. Welters P., Takegawa K., Emr S. D., Chrispeels M. J. AtVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11398–11402. doi: 10.1073/pnas.91.24.11398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wurmser A. E., Gary J. D., Emr S. D. Phosphoinositide 3-kinases and their FYVE domain-containing effectors as regulators of vacuolar/lysosomal membrane trafficking pathways. J Biol Chem. 1999 Apr 2;274(14):9129–9132. doi: 10.1074/jbc.274.14.9129. [DOI] [PubMed] [Google Scholar]
  32. Yang W., Burkhart W., Cavallius J., Merrick W. C., Boss W. F. Purification and characterization of a phosphatidylinositol 4-kinase activator in carrot cells. J Biol Chem. 1993 Jan 5;268(1):392–398. [PubMed] [Google Scholar]
  33. Zhang X., Loijens J. C., Boronenkov I. V., Parker G. J., Norris F. A., Chen J., Thum O., Prestwich G. D., Majerus P. W., Anderson R. A. Phosphatidylinositol-4-phosphate 5-kinase isozymes catalyze the synthesis of 3-phosphate-containing phosphatidylinositol signaling molecules. J Biol Chem. 1997 Jul 11;272(28):17756–17761. doi: 10.1074/jbc.272.28.17756. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES