Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Nov 1;359(Pt 3):631–637. doi: 10.1042/0264-6021:3590631

gamma-Glutamyl transpeptidase in the yeast Saccharomyces cerevisiae and its role in the vacuolar transport and metabolism of glutathione.

K Mehdi 1, J Thierie 1, M J Penninckx 1
PMCID: PMC1222185  PMID: 11672438

Abstract

In the yeast Saccharomyces cerevisiae, the enzyme gamma-glutamyl transpeptidase (gamma-GT; EC 2.3.2.2) is a glycoprotein that is bound to the vacuolar membrane. The kinetic parameters of GSH transport into isolated vacuoles were measured using intact vacuoles isolated from the wild-type yeast strain Sigma 1278b, under conditions of gamma-GT synthesis (nitrogen starvation) and repression (growth in the presence of ammonium ions). Vacuoles devoid of gamma-GT displayed a K(m) (app) of 18+/-2 mM and a V(max) (app) of 48.5+/-5 nmol of GSH/min per mg of protein. Vacuoles containing gamma-GT displayed practically the same K(m), but a higher V(max) (app) (150+/-12 nmol of GSH/min per mg of protein). Vacuoles prepared from a disruptant lacking gamma-GT showed no increase in V(max) (app) with nitrogen starvation. From a comparison of the transport data obtained for vacuoles isolated from various reference and mutant strains, it appears that the yeast cadmium factor 1 (YCF1) transport system accounts for approx. 70% of the GSH transport capacity of the vacuoles, the remaining 30% being due to a vacuolar (H(+)) ATPase-coupled system. The V(max) (app)-increasing effect of gamma-GT concerns only the YCF1 system. gamma-GT in the vacuolar membrane activates the Ycf1p transporter, either directly or indirectly. Moreover, GSH accumulating in the vacuolar space may exert a feedback effect on its own entry. Excretion of glutamate from radiolabelled GSH in isolated vacuoles containing gamma-GT was also measured. It is proposed that gamma-GT and a L-Cys-Gly dipeptidase catalyse the complete hydrolysis of GSH stored in the central vacuole of the yeast cell, prior to release of its constitutive amino acids L-glutamate, L-cysteine and glycine into the cytoplasm. Yeast appears to be a useful model for studying gamma-GT physiology and GSH metabolism.

Full Text

The Full Text of this article is available as a PDF (153.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Elskens M. T., Jaspers C. J., Penninckx M. J. Glutathione as an endogenous sulphur source in the yeast Saccharomyces cerevisiae. J Gen Microbiol. 1991 Mar;137(3):637–644. doi: 10.1099/00221287-137-3-637. [DOI] [PubMed] [Google Scholar]
  3. Harding C. O., Williams P., Wagner E., Chang D. S., Wild K., Colwell R. E., Wolff J. A. Mice with genetic gamma-glutamyl transpeptidase deficiency exhibit glutathionuria, severe growth failure, reduced life spans, and infertility. J Biol Chem. 1997 May 9;272(19):12560–12567. doi: 10.1074/jbc.272.19.12560. [DOI] [PubMed] [Google Scholar]
  4. Hodges P. E., McKee A. H., Davis B. P., Payne W. E., Garrels J. I. The Yeast Proteome Database (YPD): a model for the organization and presentation of genome-wide functional data. Nucleic Acids Res. 1999 Jan 1;27(1):69–73. doi: 10.1093/nar/27.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ito T., Chiba T., Ozawa R., Yoshida M., Hattori M., Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A. 2001 Mar 13;98(8):4569–4574. doi: 10.1073/pnas.061034498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jaspers C. J., Penninckx M. J. Glutathione metabolism in yeast Saccharomyces cerevisiae. Evidence that gamma-glutamyltranspeptidase is a vacuolar enzyme. Biochimie. 1984 Jan;66(1):71–74. doi: 10.1016/0300-9084(84)90193-7. [DOI] [PubMed] [Google Scholar]
  7. Jaspers C., Penninckx M. On the role of glutathione in the transport of amino acid in the yeast Saccharomyces cerevisiae: contradictory results. FEBS Lett. 1981 Sep 14;132(1):41–44. doi: 10.1016/0014-5793(81)80423-1. [DOI] [PubMed] [Google Scholar]
  8. Kitamoto K., Yoshizawa K., Ohsumi Y., Anraku Y. Dynamic aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae. J Bacteriol. 1988 Jun;170(6):2683–2686. doi: 10.1128/jb.170.6.2683-2686.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Klionsky D. J., Emr S. D. Membrane protein sorting: biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. EMBO J. 1989 Aug;8(8):2241–2250. doi: 10.1002/j.1460-2075.1989.tb08348.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  11. Li Z. S., Szczypka M., Lu Y. P., Thiele D. J., Rea P. A. The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J Biol Chem. 1996 Mar 15;271(11):6509–6517. doi: 10.1074/jbc.271.11.6509. [DOI] [PubMed] [Google Scholar]
  12. McIntyre T., Curthoys N. P. Renal catabolism of glutathione. Characterization of a particulate rat renal dipeptidase that catalyzes the hydrolysis of cysteinylglycine. J Biol Chem. 1982 Oct 25;257(20):11915–11921. [PubMed] [Google Scholar]
  13. Mehdi K., Penninckx M. J. An important role for glutathione and gamma-glutamyltranspeptidase in the supply of growth requirements during nitrogen starvation of the yeast Saccharomyces cerevisiae. Microbiology. 1997 Jun;143(Pt 6):1885–1889. doi: 10.1099/00221287-143-6-1885. [DOI] [PubMed] [Google Scholar]
  14. Meister A., Anderson M. E. Glutathione. Annu Rev Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. [DOI] [PubMed] [Google Scholar]
  15. Messenguy F., Colin D., ten Have J. P. Regulation of compartmentation of amino acid pools in Saccharomyces cerevisiae and its effects on metabolic control. Eur J Biochem. 1980 Jul;108(2):439–447. doi: 10.1111/j.1432-1033.1980.tb04740.x. [DOI] [PubMed] [Google Scholar]
  16. Mitchell P. The Ninth Sir Hans Krebs Lecture. Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems. Eur J Biochem. 1979 Mar 15;95(1):1–20. doi: 10.1111/j.1432-1033.1979.tb12934.x. [DOI] [PubMed] [Google Scholar]
  17. Morrison C. E., Lichstein H. C. Regulation of lysine transport by feedback inhibition in Saccharomyces cerevisiae. J Bacteriol. 1976 Mar;125(3):864–871. doi: 10.1128/jb.125.3.864-871.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nakayama R., Kumagai H., Tochikura T. Leakage of glutathione from bacterial cells caused by inhibition of gamma-glutamyltranspeptidase. Appl Environ Microbiol. 1984 Apr;47(4):653–657. doi: 10.1128/aem.47.4.653-657.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Noctor Graham, Foyer Christine H. ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):249–279. doi: 10.1146/annurev.arplant.49.1.249. [DOI] [PubMed] [Google Scholar]
  20. Payne G. M., Payne J. W. gamma-Glutamyltransferase is not involved in the bulk uptake of amino acids, peptides or gamma-glutamyl-amino acids in yeast (Saccharomyces cerevisiae). Biochem J. 1984 Feb 15;218(1):147–155. doi: 10.1042/bj2180147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Penninckx M. J., Elskens M. T. Metabolism and functions of glutathione in micro-organisms. Adv Microb Physiol. 1993;34:239–301. doi: 10.1016/s0065-2911(08)60031-4. [DOI] [PubMed] [Google Scholar]
  22. Penninckx M., Jaspers C., Wiame J. M. Glutathione metabolism in relation to the amino-acid permeation systems of the yeast Saccharomyces cerevisiae. Occurrence of gamma-glutamyltranspeptidase: its regulation and the effects of permeation mutations on the enzyme cellular level. Eur J Biochem. 1980 Feb;104(1):119–123. doi: 10.1111/j.1432-1033.1980.tb04407.x. [DOI] [PubMed] [Google Scholar]
  23. Penninckx M. A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme Microb Technol. 2000 Jun 1;26(9-10):737–742. doi: 10.1016/s0141-0229(00)00165-4. [DOI] [PubMed] [Google Scholar]
  24. Rankin B. B., McIntyre T. M., Curthoys N. P. Brush border membrane hydrolysis of S-benzyl-cysteine-p-nitroanilide, and activity of aminopeptidase M. Biochem Biophys Res Commun. 1980 Oct 16;96(3):991–996. doi: 10.1016/0006-291x(80)90050-9. [DOI] [PubMed] [Google Scholar]
  25. Rebbeor J. F., Connolly G. C., Dumont M. E., Ballatori N. ATP-dependent transport of reduced glutathione on YCF1, the yeast orthologue of mammalian multidrug resistance associated proteins. J Biol Chem. 1998 Dec 11;273(50):33449–33454. doi: 10.1074/jbc.273.50.33449. [DOI] [PubMed] [Google Scholar]
  26. Stole E., Smith T. K., Manning J. M., Meister A. Interaction of gamma-glutamyl transpeptidase with acivicin. J Biol Chem. 1994 Aug 26;269(34):21435–21439. [PubMed] [Google Scholar]
  27. Suzuki H., Kumagai H., Echigo T., Tochikura T. DNA sequence of the Escherichia coli K-12 gamma-glutamyltranspeptidase gene, ggt. J Bacteriol. 1989 Sep;171(9):5169–5172. doi: 10.1128/jb.171.9.5169-5172.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Séron K., Blondel M. O., Haguenauer-Tsapis R., Volland C. Uracil-induced down-regulation of the yeast uracil permease. J Bacteriol. 1999 Mar;181(6):1793–1800. doi: 10.1128/jb.181.6.1793-1800.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tate S. S., Meister A. gamma-Glutamyl transpeptidase: catalytic, structural and functional aspects. Mol Cell Biochem. 1981 Sep 25;39:357–368. doi: 10.1007/BF00232585. [DOI] [PubMed] [Google Scholar]
  30. Van Den Hazel H. B., Kielland-Brandt M. C., Winther J. R. Review: biosynthesis and function of yeast vacuolar proteases. Yeast. 1996 Jan;12(1):1–16. doi: 10.1002/(sici)1097-0061(199601)12:1<1::aid-yea902>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
  31. Wach A., Brachat A., Pöhlmann R., Philippsen P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 1994 Dec;10(13):1793–1808. doi: 10.1002/yea.320101310. [DOI] [PubMed] [Google Scholar]
  32. Yoshihisa T., Anraku Y. A novel pathway of import of alpha-mannosidase, a marker enzyme of vacuolar membrane, in Saccharomyces cerevisiae. J Biol Chem. 1990 Dec 25;265(36):22418–22425. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES