Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Nov 1;359(Pt 3):651–659. doi: 10.1042/0264-6021:3590651

Superficial disposition of the N-terminal region of the surfactant protein SP-C and the absence of specific SP-B-SP-C interactions in phospholipid bilayers.

I Plasencia 1, A Cruz 1, C Casals 1, J Pérez-Gil 1
PMCID: PMC1222187  PMID: 11672440

Abstract

A dansylated form of porcine surfactant-associated protein C (Dns-SP-C), bearing a single dansyl group at its N-terminal end, has been used to characterize the lipid-protein and protein-protein interactions of SP-C reconstituted in phospholipid bilayers, using fluorescence spectroscopy. The fluorescence emission spectrum of Dns-SP-C in phospholipid bilayers is similar to the spectrum of dansyl-phosphatidylethanolamine, and indicates that the N-terminal end of the protein is located at the surface of the membranes and is exposed to the aqueous environment. In membranes containing phosphatidylglycerol (PG), the fluorescence of Dns-SP-C shows a 3-fold increase with respect to the fluorescence of phosphatidylcholine (PC), suggesting that electrostatic lipid-protein interactions induce important effects on the structure and disposition of the N-terminal segment of the protein in these membranes. This effect saturates above 20% PG molar content in the bilayers. The parameters for the interaction of Dns-SP-C with PC or PG have been estimated from the changes induced in the fluorescence emission spectrum of the protein. The protein had similar K(d) values for its interaction with the different phospholipids tested, of the order of a few micromolar. Cooling of Dns-SP-C-containing dipalmitoyl PC bilayers to temperatures below the phase transition of the phospholipid produced a progressive blue-shift of the fluorescence emission of the protein. This effect is interpreted as a consequence of the transfer of the N-terminal segment of the protein into less polar environments that originate during protein lateral segregation. This suggests that conformation and interactions of the N-terminal segment of SP-C could be important in regulating the lateral distribution of the protein in surfactant bilayers and monolayers. Potential SP-B-SP-C interactions have been explored by analysing fluorescence resonance energy transfer (RET) from the single tryptophan in porcine SP-B to dansyl in Dns-SP-C. RET has been detected in samples where native SP-B and Dns-SP-C were concurrently reconstituted in PC or PG bilayers. However, the analysis of the dependence of RET on the protein density excluded specific SP-B-Dns-SP-C associations.

Full Text

The Full Text of this article is available as a PDF (188.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amrein M., von Nahmen A., Sieber M. A scanning force- and fluorescence light microscopy study of the structure and function of a model pulmonary surfactant. Eur Biophys J. 1997;26(5):349–357. doi: 10.1007/s002490050089. [DOI] [PubMed] [Google Scholar]
  2. Bardelle C., Furie B., Furie B. C., Gilbert G. E. Membrane binding kinetics of factor VIII indicate a complex binding process. J Biol Chem. 1993 Apr 25;268(12):8815–8824. [PubMed] [Google Scholar]
  3. Bradrick T. D., Freire E., Georghiou S. A high-sensitivity differential scanning calorimetric study of the interaction of melittin with dipalmitoylphosphatidylcholine fused unilamellar vesicles. Biochim Biophys Acta. 1989 Jun 26;982(1):94–102. doi: 10.1016/0005-2736(89)90179-x. [DOI] [PubMed] [Google Scholar]
  4. Castano S., Desbat B., Dufourcq J. Ideally amphipathic beta-sheeted peptides at interfaces: structure, orientation, affinities for lipids and hemolytic activity of (KL)(m)K peptides. Biochim Biophys Acta. 2000 Jan 15;1463(1):65–80. doi: 10.1016/s0005-2736(99)00175-3. [DOI] [PubMed] [Google Scholar]
  5. Cockle S. A., Epand R. M., Moscarello M. A. Intrinsic fluorescence of a hydrophobic myelin protein and some complexes with phospholipids. Biochemistry. 1978 Feb 21;17(4):630–637. doi: 10.1021/bi00597a011. [DOI] [PubMed] [Google Scholar]
  6. Creuwels L. A., Boer E. H., Demel R. A., van Golde L. M., Haagsman H. P. Neutralization of the positive charges of surfactant protein C. Effects on structure and function. J Biol Chem. 1995 Jul 7;270(27):16225–16229. doi: 10.1074/jbc.270.27.16225. [DOI] [PubMed] [Google Scholar]
  7. Creuwels L. A., Demel R. A., van Golde L. M., Benson B. J., Haagsman H. P. Effect of acylation on structure and function of surfactant protein C at the air-liquid interface. J Biol Chem. 1993 Dec 15;268(35):26752–26758. [PubMed] [Google Scholar]
  8. Cruz A., Casals C., Keough K. M., Pérez-Gil J. Different modes of interaction of pulmonary surfactant protein SP-B in phosphatidylcholine bilayers. Biochem J. 1997 Oct 1;327(Pt 1):133–138. doi: 10.1042/bj3270133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cruz A., Casals C., Plasencia I., Marsh D., Pérez-Gil J. Depth profiles of pulmonary surfactant protein B in phosphatidylcholine bilayers, studied by fluorescence and electron spin resonance spectroscopy. Biochemistry. 1998 Jun 30;37(26):9488–9496. doi: 10.1021/bi971558v. [DOI] [PubMed] [Google Scholar]
  10. Curstedt T., Johansson J., Persson P., Eklund A., Robertson B., Löwenadler B., Jörnvall H. Hydrophobic surfactant-associated polypeptides: SP-C is a lipopeptide with two palmitoylated cysteine residues, whereas SP-B lacks covalently linked fatty acyl groups. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2985–2989. doi: 10.1073/pnas.87.8.2985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Curstedt T., Jörnvall H., Robertson B., Bergman T., Berggren P. Two hydrophobic low-molecular-mass protein fractions of pulmonary surfactant. Characterization and biophysical activity. Eur J Biochem. 1987 Oct 15;168(2):255–262. doi: 10.1111/j.1432-1033.1987.tb13414.x. [DOI] [PubMed] [Google Scholar]
  12. Demel R. A., Goormaghtigh E., de Kruijff B. Lipid and peptide specificities in signal peptide--lipid interactions in model membranes. Biochim Biophys Acta. 1990 Aug 24;1027(2):155–162. doi: 10.1016/0005-2736(90)90079-4. [DOI] [PubMed] [Google Scholar]
  13. Dergunov A. D., Smirnova E. A., Merched A., Visvikis S., Siest G., Yakushkin V. V., Tsibulsky V. Conformation of apolipoprotein E both in free and in lipid-bound form may determine the avidity of triglyceride-rich lipoproteins to the LDL receptor: structural and kinetic study. Biochim Biophys Acta. 2000 Feb 24;1484(1):14–28. doi: 10.1016/s1388-1981(99)00196-1. [DOI] [PubMed] [Google Scholar]
  14. Diakowski W., Sikorski A. F. Interaction of brain spectrin (fodrin) with phospholipids. Biochemistry. 1995 Oct 10;34(40):13252–13258. doi: 10.1021/bi00040a041. [DOI] [PubMed] [Google Scholar]
  15. Fattori D., Urbani A., Brunetti M., Ingenito R., Pessi A., Prendergast K., Narjes F., Matassa V. G., De Francesco R., Steinkühler C. Probing the active site of the hepatitis C virus serine protease by fluorescence resonance energy transfer. J Biol Chem. 2000 May 19;275(20):15106–15113. doi: 10.1074/jbc.275.20.15106. [DOI] [PubMed] [Google Scholar]
  16. Ferrándiz C., Pérez-Payá E., Braco L., Abad C. Gln5 selectively monodansylated substance P as a sensitive tool for interaction studies with membranes. Biochem Biophys Res Commun. 1994 Aug 30;203(1):359–365. doi: 10.1006/bbrc.1994.2190. [DOI] [PubMed] [Google Scholar]
  17. Flach C. R., Gericke A., Keough K. M., Mendelsohn R. Palmitoylation of lung surfactant protein SP-C alters surface thermodynamics, but not protein secondary structure or orientation in 1,2-dipalmitoylphosphatidylcholine langmuir films. Biochim Biophys Acta. 1999 Jan 12;1416(1-2):11–20. doi: 10.1016/s0005-2736(98)00205-3. [DOI] [PubMed] [Google Scholar]
  18. Frey S., Tamm L. K. Membrane insertion and lateral diffusion of fluorescence-labelled cytochrome c oxidase subunit IV signal peptide in charged and uncharged phospholipid bilayers. Biochem J. 1990 Dec 15;272(3):713–719. doi: 10.1042/bj2720713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gazit E., Boman A., Boman H. G., Shai Y. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry. 1995 Sep 12;34(36):11479–11488. doi: 10.1021/bi00036a021. [DOI] [PubMed] [Google Scholar]
  20. Glasser S. W., Burhans M. S., Korfhagen T. R., Na C. L., Sly P. D., Ross G. F., Ikegami M., Whitsett J. A. Altered stability of pulmonary surfactant in SP-C-deficient mice. Proc Natl Acad Sci U S A. 2001 May 8;98(11):6366–6371. doi: 10.1073/pnas.101500298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gustafsson M., Palmblad M., Curstedt T., Johansson J., Schürch S. Palmitoylation of a pulmonary surfactant protein C analogue affects the surface associated lipid reservoir and film stability. Biochim Biophys Acta. 2000 Jun 1;1466(1-2):169–178. doi: 10.1016/s0005-2736(00)00198-x. [DOI] [PubMed] [Google Scholar]
  22. Gómez C. M., Codoñer A., Campos A., Abad C. Binding of a fluorescent dansylcadaverine-substance P analogue to negatively charged phospholipid membranes. Int J Biol Macromol. 2000 Jul 12;27(4):291–299. doi: 10.1016/s0141-8130(00)00133-1. [DOI] [PubMed] [Google Scholar]
  23. Horowitz A. D., Baatz J. E., Whitsett J. A. Lipid effects on aggregation of pulmonary surfactant protein SP-C studied by fluorescence energy transfer. Biochemistry. 1993 Sep 21;32(37):9513–9523. doi: 10.1021/bi00088a001. [DOI] [PubMed] [Google Scholar]
  24. Horowitz A. D., Elledge B., Whitsett J. A., Baatz J. E. Effects of lung surfactant proteolipid SP-C on the organization of model membrane lipids: a fluorescence study. Biochim Biophys Acta. 1992 Jun 11;1107(1):44–54. doi: 10.1016/0005-2736(92)90327-i. [DOI] [PubMed] [Google Scholar]
  25. Jenkins C. M., Wolf M. J., Mancuso D. J., Gross R. W. Identification of the calmodulin-binding domain of recombinant calcium-independent phospholipase A2beta. implications for structure and function. J Biol Chem. 2000 Dec 15;276(10):7129–7135. doi: 10.1074/jbc.M010439200. [DOI] [PubMed] [Google Scholar]
  26. Johansson J. Structure and properties of surfactant protein C. Biochim Biophys Acta. 1998 Nov 19;1408(2-3):161–172. doi: 10.1016/s0925-4439(98)00065-9. [DOI] [PubMed] [Google Scholar]
  27. Johansson J., Szyperski T., Curstedt T., Wüthrich K. The NMR structure of the pulmonary surfactant-associated polypeptide SP-C in an apolar solvent contains a valyl-rich alpha-helix. Biochemistry. 1994 May 17;33(19):6015–6023. doi: 10.1021/bi00185a042. [DOI] [PubMed] [Google Scholar]
  28. Kovacs H., Mark A. E., Johansson J., van Gunsteren W. F. The effect of environment on the stability of an integral membrane helix: molecular dynamics simulations of surfactant protein C in chloroform, methanol and water. J Mol Biol. 1995 Apr 7;247(4):808–822. doi: 10.1016/s0022-2836(05)80156-1. [DOI] [PubMed] [Google Scholar]
  29. Kramer A., Wintergalen A., Sieber M., Galla H. J., Amrein M., Guckenberger R. Distribution of the surfactant-associated protein C within a lung surfactant model film investigated by near-field optical microscopy. Biophys J. 2000 Jan;78(1):458–465. doi: 10.1016/S0006-3495(00)76608-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Krüger P., Schalke M., Wang Z., Notter R. H., Dluhy R. A., Lösche M. Effect of hydrophobic surfactant peptides SP-B and SP-C on binary phospholipid monolayers. I. Fluorescence and dark-field microscopy. Biophys J. 1999 Aug;77(2):903–914. doi: 10.1016/S0006-3495(99)76941-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lakowicz J. R., Gryczynski I., Wiczk W., Laczko G., Prendergast F. C., Johnson M. L. Conformational distributions of melittin in water/methanol mixtures from frequency-domain measurements of nonradiative energy transfer. Biophys Chem. 1990 Jul;36(2):99–115. doi: 10.1016/0301-4622(90)85014-w. [DOI] [PubMed] [Google Scholar]
  32. Meyer H., Puijk W. C., Dijkman R., Foda-van der Hoorn M. M., Pattus F., Slotboom A. J., de Haas G. H. Comparative studies of tyrosine modification in pancreatic phospholipases. 2. Properties of the nitrotyrosyl, aminotyrosyl, and dansylaminotyrosyl derivatives of pig, horse, and ox phospholipases A2 and their zymogens. Biochemistry. 1979 Aug 7;18(16):3589–3597. doi: 10.1021/bi00583a024. [DOI] [PubMed] [Google Scholar]
  33. Morrow M. R., Taneva S., Simatos G. A., Allwood L. A., Keough K. M. 2H NMR studies of the effect of pulmonary surfactant SP-C on the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine headgroup: a model for transbilayer peptides in surfactant and biological membranes. Biochemistry. 1993 Oct 26;32(42):11338–11344. doi: 10.1021/bi00093a010. [DOI] [PubMed] [Google Scholar]
  34. Nag K., Perez-Gil J., Cruz A., Keough K. M. Fluorescently labeled pulmonary surfactant protein C in spread phospholipid monolayers. Biophys J. 1996 Jul;71(1):246–256. doi: 10.1016/S0006-3495(96)79221-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nogee L. M., Dunbar A. E., 3rd, Wert S. E., Askin F., Hamvas A., Whitsett J. A. A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N Engl J Med. 2001 Feb 22;344(8):573–579. doi: 10.1056/NEJM200102223440805. [DOI] [PubMed] [Google Scholar]
  36. Oosterlaken-Dijksterhuis M. A., Haagsman H. P., van Golde L. M., Demel R. A. Characterization of lipid insertion into monomolecular layers mediated by lung surfactant proteins SP-B and SP-C. Biochemistry. 1991 Nov 12;30(45):10965–10971. doi: 10.1021/bi00109a022. [DOI] [PubMed] [Google Scholar]
  37. Oosterlaken-Dijksterhuis M. A., Haagsman H. P., van Golde L. M., Demel R. A. Interaction of lipid vesicles with monomolecular layers containing lung surfactant proteins SP-B or SP-C. Biochemistry. 1991 Aug 20;30(33):8276–8281. doi: 10.1021/bi00247a024. [DOI] [PubMed] [Google Scholar]
  38. Pastrana B., Mautone A. J., Mendelsohn R. Fourier transform infrared studies of secondary structure and orientation of pulmonary surfactant SP-C and its effect on the dynamic surface properties of phospholipids. Biochemistry. 1991 Oct 15;30(41):10058–10064. doi: 10.1021/bi00105a033. [DOI] [PubMed] [Google Scholar]
  39. Plasencia I., Cruz A., López-Lacomba J. L., Casals C., Pérez-Gil J. Selective labeling of pulmonary surfactant protein SP-C in organic solution. Anal Biochem. 2001 Sep 1;296(1):49–56. doi: 10.1006/abio.2001.5222. [DOI] [PubMed] [Google Scholar]
  40. Pérez-Gil J., Casals C., Marsh D. Interactions of hydrophobic lung surfactant proteins SP-B and SP-C with dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol bilayers studied by electron spin resonance spectroscopy. Biochemistry. 1995 Mar 28;34(12):3964–3971. doi: 10.1021/bi00012a014. [DOI] [PubMed] [Google Scholar]
  41. Pérez-Gil J., Cruz A., Casals C. Solubility of hydrophobic surfactant proteins in organic solvent/water mixtures. Structural studies on SP-B and SP-C in aqueous organic solvents and lipids. Biochim Biophys Acta. 1993 Jul 1;1168(3):261–270. doi: 10.1016/0005-2760(93)90181-8. [DOI] [PubMed] [Google Scholar]
  42. Pérez-Gil J., Keogh K. M. Structural similarities between myelin and hydrophobic surfactant associated proteins: protein motifs for interacting with bilayers. J Theor Biol. 1994 Aug 7;169(3):221–229. doi: 10.1006/jtbi.1994.1143. [DOI] [PubMed] [Google Scholar]
  43. Pérez-Gil J., Keough K. M. Interfacial properties of surfactant proteins. Biochim Biophys Acta. 1998 Nov 19;1408(2-3):203–217. doi: 10.1016/s0925-4439(98)00068-4. [DOI] [PubMed] [Google Scholar]
  44. Pérez-Gil J., López-Lacomba J. L., Cruz A., Beldarraín A., Casals C. Deacylated pulmonary surfactant protein SP-C has different effects on the thermotropic behaviour of bilayers of dipalmitoylphosphatidyl-glycerol (DPPG) than the native acylated protein. Biochem Soc Trans. 1994 Aug;22(3):372S–372S. doi: 10.1042/bst022372s. [DOI] [PubMed] [Google Scholar]
  45. Pérez-Gil J., Tucker J., Simatos G., Keough K. M. Interfacial adsorption of simple lipid mixtures combined with hydrophobic surfactant protein from pig lung. Biochem Cell Biol. 1992 May;70(5):332–338. doi: 10.1139/o92-051. [DOI] [PubMed] [Google Scholar]
  46. Shiffer K., Hawgood S., Haagsman H. P., Benson B., Clements J. A., Goerke J. Lung surfactant proteins, SP-B and SP-C, alter the thermodynamic properties of phospholipid membranes: a differential calorimetry study. Biochemistry. 1993 Jan 19;32(2):590–597. doi: 10.1021/bi00053a026. [DOI] [PubMed] [Google Scholar]
  47. Simatos G. A., Forward K. B., Morrow M. R., Keough K. M. Interaction between perdeuterated dimyristoylphosphatidylcholine and low molecular weight pulmonary surfactant protein SP-C. Biochemistry. 1990 Jun 19;29(24):5807–5814. doi: 10.1021/bi00476a023. [DOI] [PubMed] [Google Scholar]
  48. Soekarjo M., Eisenhawer M., Kuhn A., Vogel H. Thermodynamics of the membrane insertion process of the M13 procoat protein, a lipid bilayer traversing protein containing a leader sequence. Biochemistry. 1996 Jan 30;35(4):1232–1241. doi: 10.1021/bi951087h. [DOI] [PubMed] [Google Scholar]
  49. Taneva S. G., Keough K. M. Dynamic surface properties of pulmonary surfactant proteins SP-B and SP-C and their mixtures with dipalmitoylphosphatidylcholine. Biochemistry. 1994 Dec 13;33(49):14660–14670. doi: 10.1021/bi00253a003. [DOI] [PubMed] [Google Scholar]
  50. Taneva S., Keough K. M. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: II. Monolayers of pulmonary surfactant protein SP-C and phospholipids. Biophys J. 1994 Apr;66(4):1149–1157. doi: 10.1016/S0006-3495(94)80896-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Taneva S., Keough K. M. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: III. Proteins SP-B plus SP-C with phospholipids in spread monolayers. Biophys J. 1994 Apr;66(4):1158–1166. doi: 10.1016/S0006-3495(94)80897-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Vandenbussche G., Clercx A., Curstedt T., Johansson J., Jörnvall H., Ruysschaert J. M. Structure and orientation of the surfactant-associated protein C in a lipid bilayer. Eur J Biochem. 1992 Jan 15;203(1-2):201–209. doi: 10.1111/j.1432-1033.1992.tb19848.x. [DOI] [PubMed] [Google Scholar]
  53. Vaz W. L., Schoellmann G. Specific fluorescent derivatives of macromolecules. A fluorescence study of some specifically modified derivatives of chymotrypsin, trypsin and subtilisin. Biochim Biophys Acta. 1976 Jul 19;439(1):206–218. doi: 10.1016/0005-2795(76)90176-8. [DOI] [PubMed] [Google Scholar]
  54. Veldhuizen E. J., Haagsman H. P. Role of pulmonary surfactant components in surface film formation and dynamics. Biochim Biophys Acta. 2000 Aug 25;1467(2):255–270. doi: 10.1016/s0005-2736(00)00256-x. [DOI] [PubMed] [Google Scholar]
  55. Wall J., Golding C. A., Van Veen M., O'Shea P. The use of fluoresceinphosphatidylethanolamine (FPE) as a real-time probe for peptide-membrane interactions. Mol Membr Biol. 1995 Apr-Jun;12(2):183–192. doi: 10.3109/09687689509027506. [DOI] [PubMed] [Google Scholar]
  56. Wang Z., Gurel O., Baatz J. E., Notter R. H. Acylation of pulmonary surfactant protein-C is required for its optimal surface active interactions with phospholipids. J Biol Chem. 1996 Aug 9;271(32):19104–19109. doi: 10.1074/jbc.271.32.19104. [DOI] [PubMed] [Google Scholar]
  57. Wolber P. K., Hudson B. S. An analytic solution to the Förster energy transfer problem in two dimensions. Biophys J. 1979 Nov;28(2):197–210. doi: 10.1016/S0006-3495(79)85171-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Yengo C. M., Chrin L. R., Berger C. L. Interaction of myosin LYS-553 with the C-terminus and DNase I-binding loop of actin examined by fluorescence resonance energy transfer. J Struct Biol. 2000 Sep;131(3):187–196. doi: 10.1006/jsbi.2000.4296. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES