Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Nov 15;360(Pt 1):1–16. doi: 10.1042/0264-6021:3600001

Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily.

D Sheehan 1, G Meade 1, V M Foley 1, C A Dowd 1
PMCID: PMC1222196  PMID: 11695986

Abstract

The glutathione transferases (GSTs; also known as glutathione S-transferases) are major phase II detoxification enzymes found mainly in the cytosol. In addition to their role in catalysing the conjugation of electrophilic substrates to glutathione (GSH), these enzymes also carry out a range of other functions. They have peroxidase and isomerase activities, they can inhibit the Jun N-terminal kinase (thus protecting cells against H(2)O(2)-induced cell death), and they are able to bind non-catalytically a wide range of endogenous and exogenous ligands. Cytosolic GSTs of mammals have been particularly well characterized, and were originally classified into Alpha, Mu, Pi and Theta classes on the basis of a combination of criteria such as substrate/inhibitor specificity, primary and tertiary structure similarities and immunological identity. Non-mammalian GSTs have been much less well characterized, but have provided a disproportionately large number of three-dimensional structures, thus extending our structure-function knowledge of the superfamily as a whole. Moreover, several novel classes identified in non-mammalian species have been subsequently identified in mammals, sometimes carrying out functions not previously associated with GSTs. These studies have revealed that the GSTs comprise a widespread and highly versatile superfamily which show similarities to non-GST stress-related proteins. Independent classification systems have arisen for groups of organisms such as plants and insects. This review surveys the classification of GSTs in non-mammalian sources, such as bacteria, fungi, plants, insects and helminths, and attempts to relate them to the more mainstream classification system for mammalian enzymes. The implications of this classification with regard to the evolution of GSTs are discussed.

Full Text

The Full Text of this article is available as a PDF (496.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler V., Yin Z., Fuchs S. Y., Benezra M., Rosario L., Tew K. D., Pincus M. R., Sardana M., Henderson C. J., Wolf C. R. Regulation of JNK signaling by GSTp. EMBO J. 1999 Mar 1;18(5):1321–1334. doi: 10.1093/emboj/18.5.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alfenito M. R., Souer E., Goodman C. D., Buell R., Mol J., Koes R., Walbot V. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell. 1998 Jul;10(7):1135–1149. doi: 10.1105/tpc.10.7.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ali-Osman F., Akande O., Antoun G., Mao J. X., Buolamwini J. Molecular cloning, characterization, and expression in Escherichia coli of full-length cDNAs of three human glutathione S-transferase Pi gene variants. Evidence for differential catalytic activity of the encoded proteins. J Biol Chem. 1997 Apr 11;272(15):10004–10012. doi: 10.1074/jbc.272.15.10004. [DOI] [PubMed] [Google Scholar]
  4. Allocati N., Casalone E., Masulli M., Ceccarelli I., Carletti E., Parker M. W., Di Ilio C. Functional analysis of the evolutionarily conserved proline 53 residue in Proteus mirabilis glutathione transferase B1-1. FEBS Lett. 1999 Feb 26;445(2-3):347–350. doi: 10.1016/s0014-5793(99)00147-7. [DOI] [PubMed] [Google Scholar]
  5. Ames B. N., Profet M., Gold L. S. Nature's chemicals and synthetic chemicals: comparative toxicology. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7782–7786. doi: 10.1073/pnas.87.19.7782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Arca P., Hardisson C., Suárez J. E. Purification of a glutathione S-transferase that mediates fosfomycin resistance in bacteria. Antimicrob Agents Chemother. 1990 May;34(5):844–848. doi: 10.1128/aac.34.5.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Armstrong R. N. Mechanistic imperatives for the evolution of glutathione transferases. Curr Opin Chem Biol. 1998 Oct;2(5):618–623. doi: 10.1016/s1367-5931(98)80093-8. [DOI] [PubMed] [Google Scholar]
  8. Armstrong R. N. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol. 1997 Jan;10(1):2–18. doi: 10.1021/tx960072x. [DOI] [PubMed] [Google Scholar]
  9. Atkins W. M., Wang R. W., Bird A. W., Newton D. J., Lu A. Y. The catalytic mechanism of glutathione S-transferase (GST). Spectroscopic determination of the pKa of Tyr-9 in rat alpha 1-1 GST. J Biol Chem. 1993 Sep 15;268(26):19188–19191. [PubMed] [Google Scholar]
  10. Barycki J. J., Colman R. F. Identification of the nonsubstrate steroid binding site of rat liver glutathione S-transferase, isozyme 1-1, by the steroid affinity label, 3beta-(iodoacetoxy)dehydroisoandrosterone. Arch Biochem Biophys. 1997 Sep 1;345(1):16–31. doi: 10.1006/abbi.1997.0244. [DOI] [PubMed] [Google Scholar]
  11. Beall C., Fyrberg C., Song S., Fyrberg E. Isolation of a Drosophila gene encoding glutathione S-transferase. Biochem Genet. 1992 Oct;30(9-10):515–527. doi: 10.1007/BF01037590. [DOI] [PubMed] [Google Scholar]
  12. Blackburn A. C., Tzeng H. F., Anders M. W., Board P. G. Discovery of a functional polymorphism in human glutathione transferase zeta by expressed sequence tag database analysis. Pharmacogenetics. 2000 Feb;10(1):49–57. doi: 10.1097/00008571-200002000-00007. [DOI] [PubMed] [Google Scholar]
  13. Blackburn A. C., Woollatt E., Sutherland G. R., Board P. G. Characterization and chromosome location of the gene GSTZ1 encoding the human Zeta class glutathione transferase and maleylacetoacetate isomerase. Cytogenet Cell Genet. 1998;83(1-2):109–114. doi: 10.1159/000015145. [DOI] [PubMed] [Google Scholar]
  14. Blocki F. A., Ellis L. B., Wackett L. P. MIF protein are theta-class glutathione S-transferase homologs. Protein Sci. 1993 Dec;2(12):2095–2102. doi: 10.1002/pro.5560021210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Blocki F. A., Schlievert P. M., Wackett L. P. Rat liver protein linking chemical and immunological detoxification systems. Nature. 1992 Nov 19;360(6401):269–270. doi: 10.1038/360269a0. [DOI] [PubMed] [Google Scholar]
  16. Board P. G., Baker R. T., Chelvanayagam G., Jermiin L. S. Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem J. 1997 Dec 15;328(Pt 3):929–935. doi: 10.1042/bj3280929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Board P. G., Coggan M., Chelvanayagam G., Easteal S., Jermiin L. S., Schulte G. K., Danley D. E., Hoth L. R., Griffor M. C., Kamath A. V. Identification, characterization, and crystal structure of the Omega class glutathione transferases. J Biol Chem. 2000 Aug 11;275(32):24798–24806. doi: 10.1074/jbc.M001706200. [DOI] [PubMed] [Google Scholar]
  18. Board P. G., Coggan M., Wilce M. C., Parker M. W. Evidence for an essential serine residue in the active site of the Theta class glutathione transferases. Biochem J. 1995 Oct 1;311(Pt 1):247–250. doi: 10.1042/bj3110247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Board P., Blackburn A., Jermiin L. S., Chelvanayagam G. Polymorphism of phase II enzymes: identification of new enzymes and polymorphic variants by database analysis. Toxicol Lett. 1998 Dec 28;102-103:149–154. doi: 10.1016/s0378-4274(98)00300-2. [DOI] [PubMed] [Google Scholar]
  20. Brogdon W. G., McAllister J. C. Insecticide resistance and vector control. Emerg Infect Dis. 1998 Oct-Dec;4(4):605–613. doi: 10.3201/eid0404.980410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Brophy P. M., Barrett J. Glutathione transferase in helminths. Parasitology. 1990 Apr;100(Pt 2):345–349. doi: 10.1017/s0031182000061369. [DOI] [PubMed] [Google Scholar]
  22. Brown A. W. Insecticide resistance in mosquitoes: a pragmatic review. J Am Mosq Control Assoc. 1986 Jun;2(2):123–140. [PubMed] [Google Scholar]
  23. Bushweller J. H., Billeter M., Holmgren A., Wüthrich K. The nuclear magnetic resonance solution structure of the mixed disulfide between Escherichia coli glutaredoxin(C14S) and glutathione. J Mol Biol. 1994 Feb 4;235(5):1585–1597. doi: 10.1006/jmbi.1994.1108. [DOI] [PubMed] [Google Scholar]
  24. Caccuri A. M., Antonini G., Board P. G., Parker M. W., Nicotra M., Lo Bello M., Federici G., Ricci G. Proton release on binding of glutathione to alpha, Mu and Delta class glutathione transferases. Biochem J. 1999 Dec 1;344(Pt 2):419–425. [PMC free article] [PubMed] [Google Scholar]
  25. Caccuri A. M., Lo Bello M., Nuccetelli M., Nicotra M., Rossi P., Antonini G., Federici G., Ricci G. Proton release upon glutathione binding to glutathione transferase P1-1: kinetic analysis of a multistep glutathione binding process. Biochemistry. 1998 Mar 3;37(9):3028–3034. doi: 10.1021/bi971903g. [DOI] [PubMed] [Google Scholar]
  26. Casalone E., Allocati N., Ceccarelli I., Masulli M., Rossjohn J., Parker M. W., Di Ilio C. Site-directed mutagenesis of the Proteus mirabilis glutathione transferase B1-1 G-site. FEBS Lett. 1998 Feb 20;423(2):122–124. doi: 10.1016/s0014-5793(98)00080-5. [DOI] [PubMed] [Google Scholar]
  27. Chen H., Juchau M. R. Recombinant human glutathione S-transferases catalyse enzymic isomerization of 13-cis-retinoic acid to all-trans-retinoic acid in vitro. Biochem J. 1998 Nov 15;336(Pt 1):223–226. doi: 10.1042/bj3360223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Chen H., Sandler D. P., Taylor J. A., Shore D. L., Liu E., Bloomfield C. D., Bell D. A. Increased risk for myelodysplastic syndromes in individuals with glutathione transferase theta 1 (GSTT1) gene defect. Lancet. 1996 Feb 3;347(8997):295–297. doi: 10.1016/s0140-6736(96)90468-7. [DOI] [PubMed] [Google Scholar]
  29. Chenevix-Trench G., Young J., Coggan M., Board P. Glutathione S-transferase M1 and T1 polymorphisms: susceptibility to colon cancer and age of onset. Carcinogenesis. 1995 Jul;16(7):1655–1657. doi: 10.1093/carcin/16.7.1655. [DOI] [PubMed] [Google Scholar]
  30. Choi J. H., Lou W., Vancura A. A novel membrane-bound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae. J Biol Chem. 1998 Nov 6;273(45):29915–29922. doi: 10.1074/jbc.273.45.29915. [DOI] [PubMed] [Google Scholar]
  31. Chuang C. C., Wu S. H., Chiou S. H., Chang G. G. Homology modeling of cephalopod lens S-crystallin: a natural mutant of sigma-class glutathione transferase with diminished endogenous activity. Biophys J. 1999 Feb;76(2):679–690. doi: 10.1016/S0006-3495(99)77235-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Coles B. F., Anderson K. E., Doerge D. R., Churchwell M. I., Lang N. P., Kadlubar F. F. Quantitative analysis of interindividual variation of glutathione S-transferase expression in human pancreas and the ambiguity of correlating genotype with phenotype. Cancer Res. 2000 Feb 1;60(3):573–579. [PubMed] [Google Scholar]
  33. Cornett R., James M. O., Henderson G. N., Cheung J., Shroads A. L., Stacpoole P. W. Inhibition of glutathione S-transferase zeta and tyrosine metabolism by dichloroacetate: a potential unifying mechanism for its altered biotransformation and toxicity. Biochem Biophys Res Commun. 1999 Sep 7;262(3):752–756. doi: 10.1006/bbrc.1999.1287. [DOI] [PubMed] [Google Scholar]
  34. Coschigano P. W., Magasanik B. The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione s-transferases. Mol Cell Biol. 1991 Feb;11(2):822–832. doi: 10.1128/mcb.11.2.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Cotton S. C., Sharp L., Little J., Brockton N. Glutathione S-transferase polymorphisms and colorectal cancer: a HuGE review. Am J Epidemiol. 2000 Jan 1;151(1):7–32. doi: 10.1093/oxfordjournals.aje.a010124. [DOI] [PubMed] [Google Scholar]
  36. Creaney J., Wijffels G. L., Sexton J. L., Sandeman R. M., Spithill T. W., Parsons J. C. Fasciola hepatica: localisation of glutathione S-transferase isoenzymes in adult and juvenile liver fluke. Exp Parasitol. 1995 Aug;81(1):106–116. doi: 10.1006/expr.1995.1098. [DOI] [PubMed] [Google Scholar]
  37. Dirr H. W., Wallace L. A. Role of the C-terminal helix 9 in the stability and ligandin function of class alpha glutathione transferase A1-1. Biochemistry. 1999 Nov 23;38(47):15631–15640. doi: 10.1021/bi991179x. [DOI] [PubMed] [Google Scholar]
  38. Dirr H., Reinemer P., Huber R. X-ray crystal structures of cytosolic glutathione S-transferases. Implications for protein architecture, substrate recognition and catalytic function. Eur J Biochem. 1994 Mar 15;220(3):645–661. doi: 10.1111/j.1432-1033.1994.tb18666.x. [DOI] [PubMed] [Google Scholar]
  39. Dixon D. P., Cole D. J., Edwards R. Dimerisation of maize glutathione transferases in recombinant bacteria. Plant Mol Biol. 1999 Aug;40(6):997–1008. doi: 10.1023/a:1006257305725. [DOI] [PubMed] [Google Scholar]
  40. Dixon D. P., Cummins L., Cole D. J., Edwards R. Glutathione-mediated detoxification systems in plants. Curr Opin Plant Biol. 1998 Jun;1(3):258–266. doi: 10.1016/s1369-5266(98)80114-3. [DOI] [PubMed] [Google Scholar]
  41. Dominov J. A., Stenzler L., Lee S., Schwarz J. J., Leisner S., Howell S. H. Cytokinins and auxins control the expression of a gene in Nicotiana plumbaginifolia cells by feedback regulation. Plant Cell. 1992 Apr;4(4):451–461. doi: 10.1105/tpc.4.4.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Dowd C. A., Buckley C. M., Sheehan D. Glutathione S-transferases from the white-rot fungus, Phanerochaete chrysosporium. Biochem J. 1997 May 15;324(Pt 1):243–248. doi: 10.1042/bj3240243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Dowd C. A., Sheehan D. Variable expression of glutathione S-transferase isoenzymes in the fungus, Mucor circinelloides. FEMS Microbiol Lett. 1999 Jan 1;170(1):13–17. doi: 10.1111/j.1574-6968.1999.tb13349.x. [DOI] [PubMed] [Google Scholar]
  44. Droog FNJ., Hooykaas PJJ., Van Der Zaal B. J. 2,4-Dichlorophenoxyacetic Acid and Related Chlorinated Compounds Inhibit Two Auxin-Regulated Type-III Tobacco Glutathione S-Transferases. Plant Physiol. 1995 Apr;107(4):1139–1146. doi: 10.1104/pp.107.4.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Dulhunty A., Gage P., Curtis S., Chelvanayagam G., Board P. The glutathione transferase structural family includes a nuclear chloride channel and a ryanodine receptor calcium release channel modulator. J Biol Chem. 2000 Oct 16;276(5):3319–3323. doi: 10.1074/jbc.M007874200. [DOI] [PubMed] [Google Scholar]
  46. Eaton D. L., Bammler T. K. Concise review of the glutathione S-transferases and their significance to toxicology. Toxicol Sci. 1999 Jun;49(2):156–164. doi: 10.1093/toxsci/49.2.156. [DOI] [PubMed] [Google Scholar]
  47. Edwards R., Dixon D. P., Walbot V. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci. 2000 May;5(5):193–198. doi: 10.1016/s1360-1385(00)01601-0. [DOI] [PubMed] [Google Scholar]
  48. Emahazion T., Jobs M., Howell W. M., Siegfried M., Wyöni P. I., Prince J. A., Brookes A. J. Identification of 167 polymorphisms in 88 genes from candidate neurodegeneration pathways. Gene. 1999 Oct 1;238(2):315–324. doi: 10.1016/s0378-1119(99)00330-3. [DOI] [PubMed] [Google Scholar]
  49. Epp O., Ladenstein R., Wendel A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur J Biochem. 1983 Jun 1;133(1):51–69. doi: 10.1111/j.1432-1033.1983.tb07429.x. [DOI] [PubMed] [Google Scholar]
  50. Favaloro B., Tamburro A., Angelucci S., Luca A. D., Melino S., di Ilio C., Rotilio D. Molecular cloning, expression and site-directed mutagenesis of glutathione S-transferase from Ochrobactrum anthropi. Biochem J. 1998 Nov 1;335(Pt 3):573–579. doi: 10.1042/bj3350573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Fernández-Cañn J. M., Peñalva M. A. Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue. J Biol Chem. 1998 Jan 2;273(1):329–337. doi: 10.1074/jbc.273.1.329. [DOI] [PubMed] [Google Scholar]
  52. Flanagan J. U., Rossjohn J., Parker M. W., Board P. G., Chelvanayagam G. Mutagenic analysis of conserved arginine residues in and around the novel sulfate binding pocket of the human Theta class glutathione transferase T2-2. Protein Sci. 1999 Oct;8(10):2205–2212. doi: 10.1110/ps.8.10.2205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Foley V., Sheehan D. Glutathione S-transferases of the yeast Yarrowia lipolytica have unusually large molecular mass. Biochem J. 1998 Aug 1;333(Pt 3):839–845. doi: 10.1042/bj3330839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Forsberg L., de Faire U., Morgenstern R. Oxidative stress, human genetic variation, and disease. Arch Biochem Biophys. 2001 May 1;389(1):84–93. doi: 10.1006/abbi.2001.2295. [DOI] [PubMed] [Google Scholar]
  55. Fournier D., Bride J. M., Poirie M., Bergé J. B., Plapp F. W., Jr Insect glutathione S-transferases. Biochemical characteristics of the major forms from houseflies susceptible and resistant to insecticides. J Biol Chem. 1992 Jan 25;267(3):1840–1845. [PubMed] [Google Scholar]
  56. Gottesman M. M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
  57. Guengerich F. P. Enzymatic oxidation of xenobiotic chemicals. Crit Rev Biochem Mol Biol. 1990;25(2):97–153. doi: 10.3109/10409239009090607. [DOI] [PubMed] [Google Scholar]
  58. Gustafsson A., Etahadieh M., Jemth P., Mannervik B. The C-terminal region of human glutathione transferase A1-1 affects the rate of glutathione binding and the ionization of the active-site Tyr9. Biochemistry. 1999 Dec 7;38(49):16268–16275. doi: 10.1021/bi991482y. [DOI] [PubMed] [Google Scholar]
  59. Hansson L. O., Bolton-Grob R., Massoud T., Mannervik B. Evolution of differential substrate specificities in Mu class glutathione transferases probed by DNA shuffling. J Mol Biol. 1999 Mar 26;287(2):265–276. doi: 10.1006/jmbi.1999.2607. [DOI] [PubMed] [Google Scholar]
  60. Harris J. M., Meyer D. J., Coles B., Ketterer B. A novel glutathione transferase (13-13) isolated from the matrix of rat liver mitochondria having structural similarity to class theta enzymes. Biochem J. 1991 Aug 15;278(Pt 1):137–141. doi: 10.1042/bj2780137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Harris J., Coles B., Meyer D. J., Ketterer B. The isolation and characterization of the major glutathione S-transferase from the squid Loligo vulgaris. Comp Biochem Physiol B. 1991;98(4):511–515. doi: 10.1016/0305-0491(91)90245-9. [DOI] [PubMed] [Google Scholar]
  62. Harris M. J., Coggan M., Langton L., Wilson S. R., Board P. G. Polymorphism of the Pi class glutathione S-transferase in normal populations and cancer patients. Pharmacogenetics. 1998 Feb;8(1):27–31. doi: 10.1097/00008571-199802000-00004. [DOI] [PubMed] [Google Scholar]
  63. Hayes J. D., Kerr L. A., Cronshaw A. D. Evidence that glutathione S-transferases B1B1 and B2B2 are the products of separate genes and that their expression in human liver is subject to inter-individual variation. Molecular relationships between the B1 and B2 subunits and other Alpha class glutathione S-transferases. Biochem J. 1989 Dec 1;264(2):437–445. doi: 10.1042/bj2640437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Hayes J. D., Mantle T. J. Use of immuno-blot techniques to discriminate between the glutathione S-transferase Yf, Yk, Ya, Yn/Yb and Yc subunits and to study their distribution in extrahepatic tissues. Evidence for three immunochemically distinct groups of transferase in the rat. Biochem J. 1986 Feb 1;233(3):779–788. doi: 10.1042/bj2330779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Hayes J. D., McLellan L. I. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res. 1999 Oct;31(4):273–300. doi: 10.1080/10715769900300851. [DOI] [PubMed] [Google Scholar]
  66. Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30(6):445–600. doi: 10.3109/10409239509083491. [DOI] [PubMed] [Google Scholar]
  67. Hayes J. D., Strange R. C. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology. 2000 Sep;61(3):154–166. doi: 10.1159/000028396. [DOI] [PubMed] [Google Scholar]
  68. Hayes J. D., Strange R. C., Percy-Robb I. W. A study of the structures of the YaYa and YaYc glutathione S-transferases from rat liver cytosol. Evidence that the Ya monomer is responsible for lithocholate-binding activity. Biochem J. 1981 Aug 1;197(2):491–502. doi: 10.1042/bj1970491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Heijn M., Oude Elferink R. P., Jansen P. L. ATP-dependent multispecific organic anion transport system in rat erythrocyte membrane vesicles. Am J Physiol. 1992 Jan;262(1 Pt 1):C104–C110. doi: 10.1152/ajpcell.1992.262.1.C104. [DOI] [PubMed] [Google Scholar]
  70. Hemingway J., Ranson H. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol. 2000;45:371–391. doi: 10.1146/annurev.ento.45.1.371. [DOI] [PubMed] [Google Scholar]
  71. Hemingway J. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem Mol Biol. 2000 Nov;30(11):1009–1015. doi: 10.1016/s0965-1748(00)00079-5. [DOI] [PubMed] [Google Scholar]
  72. Henikoff S., Greene E. A., Pietrokovski S., Bork P., Attwood T. K., Hood L. Gene families: the taxonomy of protein paralogs and chimeras. Science. 1997 Oct 24;278(5338):609–614. doi: 10.1126/science.278.5338.609. [DOI] [PubMed] [Google Scholar]
  73. Hsieh C. H., Tsai S. P., Yeh H. I., Sheu T. C., Tam M. F. Mass spectrometric analysis of rat ovary and testis cytosolic glutathione S-transferases (GSTs): identification of a novel class-alpha GST, rGSTA6*, in rat testis. Biochem J. 1997 Apr 15;323(Pt 2):503–510. doi: 10.1042/bj3230503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Hu X., Xia H., Srivastava S. K., Herzog C., Awasthi Y. C., Ji X., Zimniak P., Singh S. V. Activity of four allelic forms of glutathione S-transferase hGSTP1-1 for diol epoxides of polycyclic aromatic hydrocarbons. Biochem Biophys Res Commun. 1997 Sep 18;238(2):397–402. doi: 10.1006/bbrc.1997.7311. [DOI] [PubMed] [Google Scholar]
  75. Hubatsch I., Ridderström M., Mannervik B. Human glutathione transferase A4-4: an alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation. Biochem J. 1998 Feb 15;330(Pt 1):175–179. doi: 10.1042/bj3300175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Inskip A., Elexperu-Camiruaga J., Buxton N., Dias P. S., MacIntosh J., Campbell D., Jones P. W., Yengi L., Talbot J. A., Strange R. C. Identification of polymorphism at the glutathione S-transferase, GSTM3 locus: evidence for linkage with GSTM1*A. Biochem J. 1995 Dec 15;312(Pt 3):713–716. doi: 10.1042/bj3120713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Ishikawa T., Casini A. F., Nishikimi M. Molecular cloning and functional expression of rat liver glutathione-dependent dehydroascorbate reductase. J Biol Chem. 1998 Oct 30;273(44):28708–28712. doi: 10.1074/jbc.273.44.28708. [DOI] [PubMed] [Google Scholar]
  78. Ishikawa T. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci. 1992 Nov;17(11):463–468. doi: 10.1016/0968-0004(92)90489-v. [DOI] [PubMed] [Google Scholar]
  79. Itzhaki H., Woodson W. R. Characterization of an ethylene-responsive glutathione S-transferase gene cluster in carnation. Plant Mol Biol. 1993 Apr;22(1):43–58. doi: 10.1007/BF00038994. [DOI] [PubMed] [Google Scholar]
  80. Jakobsson P. J., Morgenstern R., Mancini J., Ford-Hutchinson A., Persson B. Common structural features of MAPEG -- a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Protein Sci. 1999 Mar;8(3):689–692. doi: 10.1110/ps.8.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Jedlitschky G., Leier I., Buchholz U., Center M., Keppler D. ATP-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein. Cancer Res. 1994 Sep 15;54(18):4833–4836. [PubMed] [Google Scholar]
  82. Ji X., Zhang P., Armstrong R. N., Gilliland G. L. The three-dimensional structure of a glutathione S-transferase from the mu gene class. Structural analysis of the binary complex of isoenzyme 3-3 and glutathione at 2.2-A resolution. Biochemistry. 1992 Oct 27;31(42):10169–10184. doi: 10.1021/bi00157a004. [DOI] [PubMed] [Google Scholar]
  83. Ji X., von Rosenvinge E. C., Johnson W. W., Armstrong R. N., Gilliland G. L. Location of a potential transport binding site in a sigma class glutathione transferase by x-ray crystallography. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8208–8213. doi: 10.1073/pnas.93.16.8208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Ji X., von Rosenvinge E. C., Johnson W. W., Tomarev S. I., Piatigorsky J., Armstrong R. N., Gilliland G. L. Three-dimensional structure, catalytic properties, and evolution of a sigma class glutathione transferase from squid, a progenitor of the lens S-crystallins of cephalopods. Biochemistry. 1995 Apr 25;34(16):5317–5328. doi: 10.1021/bi00016a003. [DOI] [PubMed] [Google Scholar]
  85. Kanaoka Y., Ago H., Inagaki E., Nanayama T., Miyano M., Kikuno R., Fujii Y., Eguchi N., Toh H., Urade Y. Cloning and crystal structure of hematopoietic prostaglandin D synthase. Cell. 1997 Sep 19;90(6):1085–1095. doi: 10.1016/s0092-8674(00)80374-8. [DOI] [PubMed] [Google Scholar]
  86. Kanaoka Y., Fujimori K., Kikuno R., Sakaguchi Y., Urade Y., Hayaishi O. Structure and chromosomal localization of human and mouse genes for hematopoietic prostaglandin D synthase. Conservation of the ancestral genomic structure of sigma-class glutathione S-transferase. Eur J Biochem. 2000 Jun;267(11):3315–3322. doi: 10.1046/j.1432-1327.2000.01362.x. [DOI] [PubMed] [Google Scholar]
  87. Katti S. K., LeMaster D. M., Eklund H. Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol. 1990 Mar 5;212(1):167–184. doi: 10.1016/0022-2836(90)90313-B. [DOI] [PubMed] [Google Scholar]
  88. Kavallaris M. The role of multidrug resistance-associated protein (MRP) expression in multidrug resistance. Anticancer Drugs. 1997 Jan;8(1):17–25. doi: 10.1097/00001813-199701000-00002. [DOI] [PubMed] [Google Scholar]
  89. Ketley J. N., Habig W. H., Jakoby W. B. Binding of nonsubstrate ligands to the glutathione S-transferases. J Biol Chem. 1975 Nov 25;250(22):8670–8673. [PubMed] [Google Scholar]
  90. Kodym R., Calkins P., Story M. The cloning and characterization of a new stress response protein. A mammalian member of a family of theta class glutathione s-transferase-like proteins. J Biol Chem. 1999 Feb 19;274(8):5131–5137. doi: 10.1074/jbc.274.8.5131. [DOI] [PubMed] [Google Scholar]
  91. Koonin E. V., Mushegian A. R., Tatusov R. L., Altschul S. F., Bryant S. H., Bork P., Valencia A. Eukaryotic translation elongation factor 1 gamma contains a glutathione transferase domain--study of a diverse, ancient protein superfamily using motif search and structural modeling. Protein Sci. 1994 Nov;3(11):2045–2054. doi: 10.1002/pro.5560031117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Landi S. Mammalian class theta GST and differential susceptibility to carcinogens: a review. Mutat Res. 2000 Oct;463(3):247–283. doi: 10.1016/s1383-5742(00)00050-8. [DOI] [PubMed] [Google Scholar]
  93. Li Z. S., Zhao Y., Rea P. A. Magnesium Adenosine 5[prime]-Triphosphate-Energized Transport of Glutathione-S-Conjugates by Plant Vacuolar Membrane Vesicles. Plant Physiol. 1995 Apr;107(4):1257–1268. doi: 10.1104/pp.107.4.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Liebau E., Eckelt V. H., Wildenburg G., Teesdale-Spittle P., Brophy P. M., Walter R. D., Henkle-Dührsen K. Structural and functional analysis of a glutathione S-transferase from Ascaris suum. Biochem J. 1997 Jun 1;324(Pt 2):659–666. doi: 10.1042/bj3240659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Lim K., Ho J. X., Keeling K., Gilliland G. L., Ji X., Rüker F., Carter D. C. Three-dimensional structure of Schistosoma japonicum glutathione S-transferase fused with a six-amino acid conserved neutralizing epitope of gp41 from HIV. Protein Sci. 1994 Dec;3(12):2233–2244. doi: 10.1002/pro.5560031209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Listowsky I., Abramovitz M., Homma H., Niitsu Y. Intracellular binding and transport of hormones and xenobiotics by glutathione-S-transferases. Drug Metab Rev. 1988;19(3-4):305–318. doi: 10.3109/03602538808994138. [DOI] [PubMed] [Google Scholar]
  97. Liu S., Stoesz S. P., Pickett C. B. Identification of a novel human glutathione S-transferase using bioinformatics. Arch Biochem Biophys. 1998 Apr 15;352(2):306–313. doi: 10.1006/abbi.1998.0608. [DOI] [PubMed] [Google Scholar]
  98. Liu S., Zhang P., Ji X., Johnson W. W., Gilliland G. L., Armstrong R. N. Contribution of tyrosine 6 to the catalytic mechanism of isoenzyme 3-3 of glutathione S-transferase. J Biol Chem. 1992 Mar 5;267(7):4296–4299. [PubMed] [Google Scholar]
  99. Lopez M. F., Patton W. F., Sawlivich W. B., Erdjument-Bromage H., Barry P., Gmyrek K., Hines T., Tempst P., Skea W. M. A glutathione S-transferase (GST) isozyme from broccoli with significant sequence homology to the mammalian theta-class of GSTs. Biochim Biophys Acta. 1994 Mar 16;1205(1):29–38. doi: 10.1016/0167-4838(94)90088-4. [DOI] [PubMed] [Google Scholar]
  100. Lougarre A., Bride J. M., Fournier D. Is the insect glutathione S-transferase I gene family intronless? Insect Mol Biol. 1999 Feb;8(1):141–143. doi: 10.1046/j.1365-2583.1999.810141.x. [DOI] [PubMed] [Google Scholar]
  101. Mann M. A shortcut to interesting human genes: peptide sequence tags, expressed-sequence tags and computers. Trends Biochem Sci. 1996 Dec;21(12):494–495. doi: 10.1016/s0968-0004(96)30042-x. [DOI] [PubMed] [Google Scholar]
  102. Mannervik B., Alin P., Guthenberg C., Jensson H., Tahir M. K., Warholm M., Jörnvall H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7202–7206. doi: 10.1073/pnas.82.21.7202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Mannervik B., Awasthi Y. C., Board P. G., Hayes J. D., Di Ilio C., Ketterer B., Listowsky I., Morgenstern R., Muramatsu M., Pearson W. R. Nomenclature for human glutathione transferases. Biochem J. 1992 Feb 15;282(Pt 1):305–306. doi: 10.1042/bj2820305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Mannervik B., Danielson U. H. Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem. 1988;23(3):283–337. doi: 10.3109/10409238809088226. [DOI] [PubMed] [Google Scholar]
  105. Marrs K. A., Alfenito M. R., Lloyd A. M., Walbot V. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature. 1995 Jun 1;375(6530):397–400. doi: 10.1038/375397a0. [DOI] [PubMed] [Google Scholar]
  106. Marrs Kathleen A. THE FUNCTIONS AND REGULATION OF GLUTATHIONE S-TRANSFERASES IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):127–158. doi: 10.1146/annurev.arplant.47.1.127. [DOI] [PubMed] [Google Scholar]
  107. Martin J. L., Bardwell J. C., Kuriyan J. Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature. 1993 Sep 30;365(6445):464–468. doi: 10.1038/365464a0. [DOI] [PubMed] [Google Scholar]
  108. Martin J. L. Thioredoxin--a fold for all reasons. Structure. 1995 Mar 15;3(3):245–250. doi: 10.1016/s0969-2126(01)00154-x. [DOI] [PubMed] [Google Scholar]
  109. McLellan Lesley I., Wolf C. Roland. Glutathione and glutathione-dependent enzymes in cancer drug resistance. Drug Resist Updat. 1999 Jun;2(3):153–164. doi: 10.1054/drup.1999.0083. [DOI] [PubMed] [Google Scholar]
  110. McTigue M. A., Williams D. R., Tainer J. A. Crystal structures of a schistosomal drug and vaccine target: glutathione S-transferase from Schistosoma japonica and its complex with the leading antischistosomal drug praziquantel. J Mol Biol. 1995 Feb 10;246(1):21–27. doi: 10.1006/jmbi.1994.0061. [DOI] [PubMed] [Google Scholar]
  111. Meyer D. J., Coles B., Pemble S. E., Gilmore K. S., Fraser G. M., Ketterer B. Theta, a new class of glutathione transferases purified from rat and man. Biochem J. 1991 Mar 1;274(Pt 2):409–414. doi: 10.1042/bj2740409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Meyer D. J., Muimo R., Thomas M., Coates D., Isaac R. E. Purification and characterization of prostaglandin-H E-isomerase, a sigma-class glutathione S-transferase, from Ascaridia galli. Biochem J. 1996 Jan 1;313(Pt 1):223–227. doi: 10.1042/bj3130223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Meyer D. J. Significance of an unusually low Km for glutathione in glutathione transferases of the alpha, mu and pi classes. Xenobiotica. 1993 Aug;23(8):823–834. doi: 10.3109/00498259309059411. [DOI] [PubMed] [Google Scholar]
  114. Meyer D. J., Thomas M. Characterization of rat spleen prostaglandin H D-isomerase as a sigma-class GSH transferase. Biochem J. 1995 Nov 1;311(Pt 3):739–742. doi: 10.1042/bj3110739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Meyer R. C., Jr, Goldsbrough P. B., Woodson W. R. An ethylene-responsive flower senescence-related gene from carnation encodes a protein homologous to glutathione S-transferases. Plant Mol Biol. 1991 Aug;17(2):277–281. doi: 10.1007/BF00039505. [DOI] [PubMed] [Google Scholar]
  116. Mol J., Cornish E., Mason J., Koes R. Novel coloured flowers. Curr Opin Biotechnol. 1999 Apr;10(2):198–201. doi: 10.1016/s0958-1669(99)80035-4. [DOI] [PubMed] [Google Scholar]
  117. Nakajima T., Elovaara E., Anttila S., Hirvonen A., Camus A. M., Hayes J. D., Ketterer B., Vainio H. Expression and polymorphism of glutathione S-transferase in human lungs: risk factors in smoking-related lung cancer. Carcinogenesis. 1995 Apr;16(4):707–711. doi: 10.1093/carcin/16.4.707. [DOI] [PubMed] [Google Scholar]
  118. Nebert D. W., Dieter M. Z. The evolution of drug metabolism. Pharmacology. 2000 Sep;61(3):124–135. doi: 10.1159/000028393. [DOI] [PubMed] [Google Scholar]
  119. Nebert D. W. Drug-metabolizing enzymes in ligand-modulated transcription. Biochem Pharmacol. 1994 Jan 13;47(1):25–37. doi: 10.1016/0006-2952(94)90434-0. [DOI] [PubMed] [Google Scholar]
  120. Neuefeind T., Huber R., Dasenbrock H., Prade L., Bieseler B. Crystal structure of herbicide-detoxifying maize glutathione S-transferase-I in complex with lactoylglutathione: evidence for an induced-fit mechanism. J Mol Biol. 1997 Dec 12;274(4):446–453. doi: 10.1006/jmbi.1997.1402. [DOI] [PubMed] [Google Scholar]
  121. Neuefeind T., Huber R., Reinemer P., Knäblein J., Prade L., Mann K., Bieseler B. Cloning, sequencing, crystallization and X-ray structure of glutathione S-transferase-III from Zea mays var. mutin: a leading enzyme in detoxification of maize herbicides. J Mol Biol. 1997 Dec 12;274(4):577–587. doi: 10.1006/jmbi.1997.1401. [DOI] [PubMed] [Google Scholar]
  122. Oakley A. J., Lo Bello M., Battistoni A., Ricci G., Rossjohn J., Villar H. O., Parker M. W. The structures of human glutathione transferase P1-1 in complex with glutathione and various inhibitors at high resolution. J Mol Biol. 1997 Nov 21;274(1):84–100. doi: 10.1006/jmbi.1997.1364. [DOI] [PubMed] [Google Scholar]
  123. Patskovsky Y. V., Patskovska L. N., Listowsky I. An asparagine-phenylalanine substitution accounts for catalytic differences between hGSTM3-3 and other human class mu glutathione S-transferases. Biochemistry. 1999 Dec 7;38(49):16187–16194. doi: 10.1021/bi991714t. [DOI] [PubMed] [Google Scholar]
  124. Patskovsky Y. V., Patskovska L. N., Listowsky I. The enhanced affinity for thiolate anion and activation of enzyme-bound glutathione is governed by an arginine residue of human Mu class glutathione S-transferases. J Biol Chem. 2000 Feb 4;275(5):3296–3304. doi: 10.1074/jbc.275.5.3296. [DOI] [PubMed] [Google Scholar]
  125. Pemble S. E., Taylor J. B. An evolutionary perspective on glutathione transferases inferred from class-theta glutathione transferase cDNA sequences. Biochem J. 1992 Nov 1;287(Pt 3):957–963. doi: 10.1042/bj2870957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Pemble S. E., Wardle A. F., Taylor J. B. Glutathione S-transferase class Kappa: characterization by the cloning of rat mitochondrial GST and identification of a human homologue. Biochem J. 1996 Nov 1;319(Pt 3):749–754. doi: 10.1042/bj3190749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Pemble S., Schroeder K. R., Spencer S. R., Meyer D. J., Hallier E., Bolt H. M., Ketterer B., Taylor J. B. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J. 1994 May 15;300(Pt 1):271–276. doi: 10.1042/bj3000271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Pflugmacher S., Schröder P., Sandermann H., Jr Taxonomic distribution of plant glutathione S-transferases acting on xenobiotics. Phytochemistry. 2000 Jun;54(3):267–273. doi: 10.1016/s0031-9422(00)00116-3. [DOI] [PubMed] [Google Scholar]
  129. Pichersky E., Gang D. R. Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci. 2000 Oct;5(10):439–445. doi: 10.1016/s1360-1385(00)01741-6. [DOI] [PubMed] [Google Scholar]
  130. Polekhina G., Board P. G., Blackburn A. C., Parker M. W. Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity. Biochemistry. 2001 Feb 13;40(6):1567–1576. doi: 10.1021/bi002249z. [DOI] [PubMed] [Google Scholar]
  131. Prade L., Huber R., Bieseler B. Structures of herbicides in complex with their detoxifying enzyme glutathione S-transferase - explanations for the selectivity of the enzyme in plants. Structure. 1998 Nov 15;6(11):1445–1452. doi: 10.1016/s0969-2126(98)00143-9. [DOI] [PubMed] [Google Scholar]
  132. Prapanthadara L., Ranson H., Somboon P., Hemingway J. Cloning, expression and characterization of an insect class I glutathione S-transferase from Anopheles dirus species B. Insect Biochem Mol Biol. 1998 May-Jun;28(5-6):321–329. doi: 10.1016/s0965-1748(98)00006-x. [DOI] [PubMed] [Google Scholar]
  133. Ranson H., Collins F., Hemingway J. The role of alternative mRNA splicing in generating heterogeneity within the Anopheles gambiae class I glutathione S-transferase family. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14284–14289. doi: 10.1073/pnas.95.24.14284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Ranson H., Prapanthadara L. a., Hemingway J. Cloning and characterization of two glutathione S-transferases from a DDT-resistant strain of Anopheles gambiae. Biochem J. 1997 May 15;324(Pt 1):97–102. doi: 10.1042/bj3240097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Ranson H., Rossiter L., Ortelli F., Jensen B., Wang X., Roth C. W., Collins F. H., Hemingway J. Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem J. 2001 Oct 15;359(Pt 2):295–304. doi: 10.1042/0264-6021:3590295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Reinemer P., Dirr H. W., Ladenstein R., Huber R., Lo Bello M., Federici G., Parker M. W. Three-dimensional structure of class pi glutathione S-transferase from human placenta in complex with S-hexylglutathione at 2.8 A resolution. J Mol Biol. 1992 Sep 5;227(1):214–226. doi: 10.1016/0022-2836(92)90692-d. [DOI] [PubMed] [Google Scholar]
  137. Reinemer P., Dirr H. W., Ladenstein R., Schäffer J., Gallay O., Huber R. The three-dimensional structure of class pi glutathione S-transferase in complex with glutathione sulfonate at 2.3 A resolution. EMBO J. 1991 Aug;10(8):1997–2005. doi: 10.1002/j.1460-2075.1991.tb07729.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Reinemer P., Prade L., Hof P., Neuefeind T., Huber R., Zettl R., Palme K., Schell J., Koelln I., Bartunik H. D. Three-dimensional structure of glutathione S-transferase from Arabidopsis thaliana at 2.2 A resolution: structural characterization of herbicide-conjugating plant glutathione S-transferases and a novel active site architecture. J Mol Biol. 1996 Jan 19;255(2):289–309. doi: 10.1006/jmbi.1996.0024. [DOI] [PubMed] [Google Scholar]
  139. Rhoads D. M., Zarlengo R. P., Tu C. P. The basic glutathione S-transferases from human livers are products of separate genes. Biochem Biophys Res Commun. 1987 May 29;145(1):474–481. doi: 10.1016/0006-291x(87)91345-3. [DOI] [PubMed] [Google Scholar]
  140. Rossjohn J., Board P. G., Parker M. W., Wilce M. C. A structurally derived consensus pattern for theta class glutathione transferases. Protein Eng. 1996 Apr;9(4):327–332. doi: 10.1093/protein/9.4.327. [DOI] [PubMed] [Google Scholar]
  141. Rossjohn J., Feil S. C., Wilce M. C., Sexton J. L., Spithill T. W., Parker M. W. Crystallization, structural determination and analysis of a novel parasite vaccine candidate: Fasciola hepatica glutathione S-transferase. J Mol Biol. 1997 Nov 7;273(4):857–872. doi: 10.1006/jmbi.1997.1338. [DOI] [PubMed] [Google Scholar]
  142. Rossjohn J., McKinstry W. J., Oakley A. J., Verger D., Flanagan J., Chelvanayagam G., Tan K. L., Board P. G., Parker M. W. Human theta class glutathione transferase: the crystal structure reveals a sulfate-binding pocket within a buried active site. Structure. 1998 Mar 15;6(3):309–322. doi: 10.1016/s0969-2126(98)00034-3. [DOI] [PubMed] [Google Scholar]
  143. Rossjohn J., Polekhina G., Feil S. C., Allocati N., Masulli M., Di Illio C., Parker M. W. A mixed disulfide bond in bacterial glutathione transferase: functional and evolutionary implications. Structure. 1998 Jun 15;6(6):721–734. doi: 10.1016/s0969-2126(98)00074-4. [DOI] [PubMed] [Google Scholar]
  144. Rouimi P., Debrauwer L., Tulliez J. Electrospray ionization-mass spectrometry as a tool for characterization of glutathione S-transferase isozymes. Anal Biochem. 1995 Aug 10;229(2):304–312. doi: 10.1006/abio.1995.1417. [DOI] [PubMed] [Google Scholar]
  145. Rowe J. D., Patskovsky Y. V., Patskovska L. N., Novikova E., Listowsky I. Rationale for reclassification of a distinctive subdivision of mammalian class Mu glutathione S-transferases that are primarily expressed in testis. J Biol Chem. 1998 Apr 17;273(16):9593–9601. doi: 10.1074/jbc.273.16.9593. [DOI] [PubMed] [Google Scholar]
  146. Roy A., Lu C. F., Marykwas D. L., Lipke P. N., Kurjan J. The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin. Mol Cell Biol. 1991 Aug;11(8):4196–4206. doi: 10.1128/mcb.11.8.4196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Salinas A. E., Wong M. G. Glutathione S-transferases--a review. Curr Med Chem. 1999 Apr;6(4):279–309. [PubMed] [Google Scholar]
  148. Salvatore L., Wijffels G., Sexton J. L., Panaccio M., Mailer S., McCauley I., Spithill T. W. Biochemical analysis of recombinant glutathione S-transferase of Fasciola hepatica. Mol Biochem Parasitol. 1995 Feb;69(2):281–288. doi: 10.1016/0166-6851(94)00205-2. [DOI] [PubMed] [Google Scholar]
  149. Saxena M., Singhal S. S., Awasthi S., Singh S. V., Labelle E. F., Zimniak P., Awasthi Y. C. Dinitrophenyl S-glutathione ATPase purified from human muscle catalyzes ATP hydrolysis in the presence of leukotrienes. Arch Biochem Biophys. 1992 Oct;298(1):231–237. doi: 10.1016/0003-9861(92)90117-f. [DOI] [PubMed] [Google Scholar]
  150. Schröder K. R., Hallier E., Meyer D. J., Wiebel F. A., Müller A. M., Bolt H. M. Purification and characterization of a new glutathione S-transferase, class theta, from human erythrocytes. Arch Toxicol. 1996;70(9):559–566. doi: 10.1007/BF03035371. [DOI] [PubMed] [Google Scholar]
  151. Sheehan D., Casey J. P. Microbial glutathione S-transferases. Comp Biochem Physiol B. 1993 Jan;104(1):1–6. doi: 10.1016/0305-0491(93)90330-8. [DOI] [PubMed] [Google Scholar]
  152. Sinning I., Kleywegt G. J., Cowan S. W., Reinemer P., Dirr H. W., Huber R., Gilliland G. L., Armstrong R. N., Ji X., Board P. G. Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the Mu and Pi class enzymes. J Mol Biol. 1993 Jul 5;232(1):192–212. doi: 10.1006/jmbi.1993.1376. [DOI] [PubMed] [Google Scholar]
  153. Snyder M. J., Maddison D. R. Molecular phylogeny of glutathione-S-transferases. DNA Cell Biol. 1997 Nov;16(11):1373–1384. doi: 10.1089/dna.1997.16.1373. [DOI] [PubMed] [Google Scholar]
  154. Stevens J. M., Armstrong R. N., Dirr H. W. Electrostatic interactions affecting the active site of class sigma glutathione S-transferase. Biochem J. 2000 Apr 1;347(Pt 1):193–197. [PMC free article] [PubMed] [Google Scholar]
  155. Stevens J. M., Hornby J. A., Armstrong R. N., Dirr H. W. Class sigma glutathione transferase unfolds via a dimeric and a monomeric intermediate: impact of subunit interface on conformational stability in the superfamily. Biochemistry. 1998 Nov 3;37(44):15534–15541. doi: 10.1021/bi981044b. [DOI] [PubMed] [Google Scholar]
  156. Strange R. C., Jones P. W., Fryer A. A. Glutathione S-transferase: genetics and role in toxicology. Toxicol Lett. 2000 Mar 15;112-113:357–363. doi: 10.1016/s0378-4274(99)00230-1. [DOI] [PubMed] [Google Scholar]
  157. Subramaniam K., Ye Z., Buechley G., Shaner G., Solomos T., Ueng P. P. Isolation of a zeta class wheat glutathione S-transferase gene. Biochim Biophys Acta. 1999 Oct 28;1447(2-3):348–356. doi: 10.1016/s0167-4781(99)00176-1. [DOI] [PubMed] [Google Scholar]
  158. Syvanen M., Zhou Z. H., Wang J. Y. Glutathione transferase gene family from the housefly Musca domestica. Mol Gen Genet. 1994 Oct 17;245(1):25–31. doi: 10.1007/BF00279747. [DOI] [PubMed] [Google Scholar]
  159. Tamaki H., Yamamoto K., Kumagai H. Expression of two glutathione S-transferase genes in the yeast Issatchenkia orientalis is induced by o-dinitrobenzene during cell growth arrest. J Bacteriol. 1999 May;181(9):2958–2962. doi: 10.1128/jb.181.9.2958-2962.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Tang A. H., Tu C. P. Biochemical characterization of Drosophila glutathione S-transferases D1 and D21. J Biol Chem. 1994 Nov 11;269(45):27876–27884. [PubMed] [Google Scholar]
  161. Taylor J. L., Fritzemeier K. H., Häuser I., Kombrink E., Rohwer F., Schröder M., Strittmatter G., Hahlbrock K. Structural analysis and activation by fungal infection of a gene encoding a pathogenesis-related protein in potato. Mol Plant Microbe Interact. 1990 Mar-Apr;3(2):72–77. [PubMed] [Google Scholar]
  162. Tew K. D. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 1994 Aug 15;54(16):4313–4320. [PubMed] [Google Scholar]
  163. Thomson A. M., Meyer D. J., Hayes J. D. Sequence, catalytic properties and expression of chicken glutathione-dependent prostaglandin D2 synthase, a novel class Sigma glutathione S-transferase. Biochem J. 1998 Jul 15;333(Pt 2):317–325. doi: 10.1042/bj3330317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Tomarev S. I., Chung S., Piatigorsky J. Glutathione S-transferase and S-crystallins of cephalopods: evolution from active enzyme to lens-refractive proteins. J Mol Evol. 1995 Dec;41(6):1048–1056. doi: 10.1007/BF00173186. [DOI] [PubMed] [Google Scholar]
  165. Tomarev S. I., Zinovieva R. D., Guo K., Piatigorsky J. Squid glutathione S-transferase. Relationships with other glutathione S-transferases and S-crystallins of cephalopods. J Biol Chem. 1993 Feb 25;268(6):4534–4542. [PubMed] [Google Scholar]
  166. Tong Z., Board P. G., Anders M. W. Glutathione transferase zeta catalyses the oxygenation of the carcinogen dichloroacetic acid to glyoxylic acid. Biochem J. 1998 Apr 15;331(Pt 2):371–374. doi: 10.1042/bj3310371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Tzeng H. F., Blackburn A. C., Board P. G., Anders M. W. Polymorphism- and species-dependent inactivation of glutathione transferase zeta by dichloroacetate. Chem Res Toxicol. 2000 Apr;13(4):231–236. doi: 10.1021/tx990175q. [DOI] [PubMed] [Google Scholar]
  168. Urade Y., Hayaishi O. Prostaglandin D synthase: structure and function. Vitam Horm. 2000;58:89–120. doi: 10.1016/s0083-6729(00)58022-4. [DOI] [PubMed] [Google Scholar]
  169. Vuilleumier S. Bacterial glutathione S-transferases: what are they good for? J Bacteriol. 1997 Mar;179(5):1431–1441. doi: 10.1128/jb.179.5.1431-1441.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Webb G., Vaska V., Coggan M., Board P. Chromosomal localization of the gene for the human theta class glutathione transferase (GSTT1). Genomics. 1996 Apr 1;33(1):121–123. doi: 10.1006/geno.1996.0167. [DOI] [PubMed] [Google Scholar]
  171. Wilce M. C., Board P. G., Feil S. C., Parker M. W. Crystal structure of a theta-class glutathione transferase. EMBO J. 1995 May 15;14(10):2133–2143. doi: 10.1002/j.1460-2075.1995.tb07207.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Wilce M. C., Parker M. W. Structure and function of glutathione S-transferases. Biochim Biophys Acta. 1994 Mar 16;1205(1):1–18. doi: 10.1016/0167-4838(94)90086-8. [DOI] [PubMed] [Google Scholar]
  173. Xiao G., Liu S., Ji X., Johnson W. W., Chen J., Parsons J. F., Stevens W. J., Gilliland G. L., Armstrong R. N. First-sphere and second-sphere electrostatic effects in the active site of a class mu gluthathione transferase. Biochemistry. 1996 Apr 16;35(15):4753–4765. doi: 10.1021/bi960189k. [DOI] [PubMed] [Google Scholar]
  174. Yin Z., Ivanov V. N., Habelhah H., Tew K., Ronai Z. Glutathione S-transferase p elicits protection against H2O2-induced cell death via coordinated regulation of stress kinases. Cancer Res. 2000 Aug 1;60(15):4053–4057. [PubMed] [Google Scholar]
  175. Zettl R., Schell J., Palme K. Photoaffinity labeling of Arabidopsis thaliana plasma membrane vesicles by 5-azido-[7-3H]indole-3-acetic acid: identification of a glutathione S-transferase. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):689–693. doi: 10.1073/pnas.91.2.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Zhao T., Singhal S. S., Piper J. T., Cheng J., Pandya U., Clark-Wronski J., Awasthi S., Awasthi Y. C. The role of human glutathione S-transferases hGSTA1-1 and hGSTA2-2 in protection against oxidative stress. Arch Biochem Biophys. 1999 Jul 15;367(2):216–224. doi: 10.1006/abbi.1999.1277. [DOI] [PubMed] [Google Scholar]
  177. Zhou Z. H., Syvanen M. A complex glutathione transferase gene family in the housefly Musca domestica. Mol Gen Genet. 1997 Sep;256(2):187–194. doi: 10.1007/s004380050560. [DOI] [PubMed] [Google Scholar]
  178. van Veen H. W., Konings W. N. Multidrug transporters from bacteria to man: similarities in structure and function. Semin Cancer Biol. 1997 Jun;8(3):183–191. doi: 10.1006/scbi.1997.0064. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Multimedia adjunct for figure 2
bj3600001f02add.gif (151.9KB, gif)
Multimedia adjunct for figure 3
bj3600001f03add.gif (296.4KB, gif)
Multimedia adjunct for figure 4
bj3600001f04add.gif (119.1KB, gif)

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES