Abstract
Although interleukin-10 (IL-10) is known to contribute to inflammation and pathogenesis in mammalian organs, little is known about its precise role in the mammary gland. We found that IL-10 levels fluctuated during the mouse mammary cycle, showing little expression at the lactation stage and the highest expression at the involution stage. To reveal the effects of IL-10 on involution, expression profiles of apoptosis-related genes were examined in mice transgenic for IL-10 as well as in IL-10(-/-) mice. Mild inflammatory lesions by lymphocytes were observed in the mammary glands from four of seven transgenic lines at the lactation stage. It was striking that the expression of tumour-necrosis-factor-alpha-related apoptosis-inducing ligand (TRAIL) among the apoptosis-related genes was elevated approx. 7-fold in the transgenic mice, whereas others were almost unchanged. Furthermore, TRAIL was down-regulated 4-fold in the IL-10(-/-) mice at the involution stage. Elevated expression of TRAIL and of death receptor 4 (DR4) protein was identified at the involution stage of normal mammary glands as well as at the lactation stage of the IL-10 transgenic mice. These results indicate that the elevated expression of IL-10 at the involution stage recruits lymphocytes and induces the expression of TRAIL and DR4. These phenomena might partly contribute to apoptosis in the mammary epithelial cells for entering involution.
Full Text
The Full Text of this article is available as a PDF (376.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bacchetta R., Bigler M., Touraine J. L., Parkman R., Tovo P. A., Abrams J., de Waal Malefyt R., de Vries J. E., Roncarolo M. G. High levels of interleukin 10 production in vivo are associated with tolerance in SCID patients transplanted with HLA mismatched hematopoietic stem cells. J Exp Med. 1994 Feb 1;179(2):493–502. doi: 10.1084/jem.179.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Basolo F., Fiore L., Fontanini G., Conaldi P. G., Calvo S., Falcone V., Toniolo A. Expression of and response to interleukin 6 (IL6) in human mammary tumors. Cancer Res. 1996 Jul 1;56(13):3118–3122. [PubMed] [Google Scholar]
- Bellgrau D., Gold D., Selawry H., Moore J., Franzusoff A., Duke R. C. A role for CD95 ligand in preventing graft rejection. Nature. 1995 Oct 19;377(6550):630–632. doi: 10.1038/377630a0. [DOI] [PubMed] [Google Scholar]
- Cha S. S., Kim M. S., Choi Y. H., Sung B. J., Shin N. K., Shin H. C., Sung Y. C., Oh B. H. 2.8 A resolution crystal structure of human TRAIL, a cytokine with selective antitumor activity. Immunity. 1999 Aug;11(2):253–261. doi: 10.1016/s1074-7613(00)80100-4. [DOI] [PubMed] [Google Scholar]
- Fleck M., Kern E. R., Zhou T., Podlech J., Wintersberger W., Edwards C. K., 3rd, Mountz J. D. Apoptosis mediated by Fas but not tumor necrosis factor receptor 1 prevents chronic disease in mice infected with murine cytomegalovirus. J Clin Invest. 1998 Oct 1;102(7):1431–1443. doi: 10.1172/JCI3248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox R. I., Saito I. Criteria for diagnosis of Sjögren's syndrome. Rheum Dis Clin North Am. 1994 May;20(2):391–407. [PubMed] [Google Scholar]
- Garofalo R., Chheda S., Mei F., Palkowetz K. H., Rudloff H. E., Schmalstieg F. C., Rassin D. K., Goldman A. S. Interleukin-10 in human milk. Pediatr Res. 1995 Apr;37(4 Pt 1):444–449. doi: 10.1203/00006450-199504000-00010. [DOI] [PubMed] [Google Scholar]
- Gibson S. B., Oyer R., Spalding A. C., Anderson S. M., Johnson G. L. Increased expression of death receptors 4 and 5 synergizes the apoptosis response to combined treatment with etoposide and TRAIL. Mol Cell Biol. 2000 Jan;20(1):205–212. doi: 10.1128/mcb.20.1.205-212.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Go N. F., Castle B. E., Barrett R., Kastelein R., Dang W., Mosmann T. R., Moore K. W., Howard M. Interleukin 10, a novel B cell stimulatory factor: unresponsiveness of X chromosome-linked immunodeficiency B cells. J Exp Med. 1990 Dec 1;172(6):1625–1631. doi: 10.1084/jem.172.6.1625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffith T. S., Brunner T., Fletcher S. M., Green D. R., Ferguson T. A. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science. 1995 Nov 17;270(5239):1189–1192. doi: 10.1126/science.270.5239.1189. [DOI] [PubMed] [Google Scholar]
- Guenette R. S., Corbeil H. B., Léger J., Wong K., Mézl V., Mooibroek M., Tenniswood M. Induction of gene expression during involution of the lactating mammary gland of the rat. J Mol Endocrinol. 1994 Feb;12(1):47–60. doi: 10.1677/jme.0.0120047. [DOI] [PubMed] [Google Scholar]
- Guo K., Wolf V., Dharmarajan A. M., Feng Z., Bielke W., Saurer S., Friis R. Apoptosis-associated gene expression in the corpus luteum of the rat. Biol Reprod. 1998 Mar;58(3):739–746. doi: 10.1095/biolreprod58.3.739. [DOI] [PubMed] [Google Scholar]
- Hunt J. S., Vassmer D., Ferguson T. A., Miller L. Fas ligand is positioned in mouse uterus and placenta to prevent trafficking of activated leukocytes between the mother and the conceptus. J Immunol. 1997 May 1;158(9):4122–4128. [PubMed] [Google Scholar]
- Imagawa W., Tomooka Y., Hamamoto S., Nandi S. Stimulation of mammary epithelial cell growth in vitro: interaction of epidermal growth factor and mammogenic hormones. Endocrinology. 1985 Apr;116(4):1514–1524. doi: 10.1210/endo-116-4-1514. [DOI] [PubMed] [Google Scholar]
- Jaggi R., Marti A., Guo K., Feng Z., Friis R. R. Regulation of a physiological apoptosis: mouse mammary involution. J Dairy Sci. 1996 Jun;79(6):1074–1084. doi: 10.3168/jds.S0022-0302(96)76461-5. [DOI] [PubMed] [Google Scholar]
- Jhappan C., Geiser A. G., Kordon E. C., Bagheri D., Hennighausen L., Roberts A. B., Smith G. H., Merlino G. Targeting expression of a transforming growth factor beta 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J. 1993 May;12(5):1835–1845. doi: 10.1002/j.1460-2075.1993.tb05832.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamper E. F., Papaphilis A. D., Angelopoulou M. K., Kopeikina L. T., Siakantaris M. P., Pangalis G. A., Stavridis J. C. Serum levels of tetranectin, intercellular adhesion molecule-1 and interleukin-10 in B-chronic lymphocytic leukemia. Clin Biochem. 1999 Nov;32(8):639–645. doi: 10.1016/s0009-9120(99)00066-1. [DOI] [PubMed] [Google Scholar]
- Kim K., Fisher M. J., Xu S. Q., el-Deiry W. S. Molecular determinants of response to TRAIL in killing of normal and cancer cells. Clin Cancer Res. 2000 Feb;6(2):335–346. [PubMed] [Google Scholar]
- Kim S. J., Sohn B. H., Jeong S., Pak K. W., Park J. S., Park I. Y., Lee T. H., Choi Y. H., Lee C. S., Han Y. M. High-level expression of human lactoferrin in milk of transgenic mice using genomic lactoferrin sequence. J Biochem. 1999 Aug;126(2):320–325. doi: 10.1093/oxfordjournals.jbchem.a022452. [DOI] [PubMed] [Google Scholar]
- Kühn R., Löhler J., Rennick D., Rajewsky K., Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993 Oct 22;75(2):263–274. doi: 10.1016/0092-8674(93)80068-p. [DOI] [PubMed] [Google Scholar]
- Mauvais-Jarvis P., Kuttenn F., Gompel A. Estradiol/progesterone interaction in normal and pathologic breast cells. Ann N Y Acad Sci. 1986;464:152–167. doi: 10.1111/j.1749-6632.1986.tb16002.x. [DOI] [PubMed] [Google Scholar]
- Mignon-Godefroy K., Rott O., Brazillet M. P., Charreire J. Curative and protective effects of IL-10 in experimental autoimmune thyroiditis (EAT). Evidence for IL-10-enhanced cell death in EAT. J Immunol. 1995 Jun 15;154(12):6634–6643. [PubMed] [Google Scholar]
- Pennline K. J., Roque-Gaffney E., Monahan M. Recombinant human IL-10 prevents the onset of diabetes in the nonobese diabetic mouse. Clin Immunol Immunopathol. 1994 May;71(2):169–175. doi: 10.1006/clin.1994.1068. [DOI] [PubMed] [Google Scholar]
- Rousset F., Garcia E., Defrance T., Péronne C., Vezzio N., Hsu D. H., Kastelein R., Moore K. W., Banchereau J. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1890–1893. doi: 10.1073/pnas.89.5.1890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saito I., Haruta K., Shimuta M., Inoue H., Sakurai H., Yamada K., Ishimaru N., Higashiyama H., Sumida T., Ishida H. Fas ligand-mediated exocrinopathy resembling Sjögren's syndrome in mice transgenic for IL-10. J Immunol. 1999 Mar 1;162(5):2488–2494. [PubMed] [Google Scholar]
- Sastre M., Galea E., Feinstein D., Reis D. J., Regunathan S. Metabolism of agmatine in macrophages: modulation by lipopolysaccharide and inhibitory cytokines. Biochem J. 1998 Mar 15;330(Pt 3):1405–1409. doi: 10.1042/bj3301405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider P., Thome M., Burns K., Bodmer J. L., Hofmann K., Kataoka T., Holler N., Tschopp J. TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kappaB. Immunity. 1997 Dec;7(6):831–836. doi: 10.1016/s1074-7613(00)80401-x. [DOI] [PubMed] [Google Scholar]
- Sheridan J. P., Marsters S. A., Pitti R. M., Gurney A., Skubatch M., Baldwin D., Ramakrishnan L., Gray C. L., Baker K., Wood W. I. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science. 1997 Aug 8;277(5327):818–821. doi: 10.1126/science.277.5327.818. [DOI] [PubMed] [Google Scholar]
- Sohn B. H., Kim S. J., Park H., Park S. K., Lee S. C., Hong H. J., Park Y. S., Lee K. K. Expression and characterization of bioactive human thrombopoietin in the milk of transgenic mice. DNA Cell Biol. 1999 Nov;18(11):845–852. doi: 10.1089/104454999314845. [DOI] [PubMed] [Google Scholar]
- Song K., Chen Y., Göke R., Wilmen A., Seidel C., Göke A., Hilliard B., Chen Y. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an inhibitor of autoimmune inflammation and cell cycle progression. J Exp Med. 2000 Apr 3;191(7):1095–1104. doi: 10.1084/jem.191.7.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suttles J., Milhorn D. M., Miller R. W., Poe J. C., Wahl L. M., Stout R. D. CD40 signaling of monocyte inflammatory cytokine synthesis through an ERK1/2-dependent pathway. A target of interleukin (il)-4 and il-10 anti-inflammatory action. J Biol Chem. 1999 Feb 26;274(9):5835–5842. doi: 10.1074/jbc.274.9.5835. [DOI] [PubMed] [Google Scholar]
- Tan J. C., Indelicato S. R., Narula S. K., Zavodny P. J., Chou C. C. Characterization of interleukin-10 receptors on human and mouse cells. J Biol Chem. 1993 Oct 5;268(28):21053–21059. [PubMed] [Google Scholar]
- Vora M., Romero L. I., Karasek M. A. Interleukin-10 induces E-selectin on small and large blood vessel endothelial cells. J Exp Med. 1996 Sep 1;184(3):821–829. doi: 10.1084/jem.184.3.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang P., Wu P., Siegel M. I., Egan R. W., Billah M. M. Interleukin (IL)-10 inhibits nuclear factor kappa B (NF kappa B) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. J Biol Chem. 1995 Apr 21;270(16):9558–9563. doi: 10.1074/jbc.270.16.9558. [DOI] [PubMed] [Google Scholar]
- White S. C., Casarett G. W. Induction of experimental autoallergic sialadenitis. J Immunol. 1974 Jan;112(1):178–185. [PubMed] [Google Scholar]
- Wiley S. R., Schooley K., Smolak P. J., Din W. S., Huang C. P., Nicholl J. K., Sutherland G. R., Smith T. D., Rauch C., Smith C. A. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 1995 Dec;3(6):673–682. doi: 10.1016/1074-7613(95)90057-8. [DOI] [PubMed] [Google Scholar]
- Wogensen L., Huang X., Sarvetnick N. Leukocyte extravasation into the pancreatic tissue in transgenic mice expressing interleukin 10 in the islets of Langerhans. J Exp Med. 1993 Jul 1;178(1):175–185. doi: 10.1084/jem.178.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Vries J. E. Immunosuppressive and anti-inflammatory properties of interleukin 10. Ann Med. 1995 Oct;27(5):537–541. doi: 10.3109/07853899509002465. [DOI] [PubMed] [Google Scholar]