Abstract
Anandamide and other polyunsaturated N-acylethanolamines (NAEs) exert biological activity by binding to cannabinoid receptors. These receptors are linked to G(i/o) proteins and their activation leads to extracellular-signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAP kinase) activation, inhibition of cAMP-dependent signalling and complex changes in the expression of various genes. Saturated and monounsaturated NAEs cannot bind to cannabinoid receptors and may thus mediate cell signalling through other targets. Here we report that both saturated/monounsaturated NAEs and anandamide (20:4(n-6) NAE) stimulate cannabinoid-receptor-independent ERK phosphorylation and activator protein-1 (AP-1)-dependent transcriptional activity in mouse epidermal JB6 cells. Using a clone of JB6 P(+) cells with an AP-1 collagen-luciferase reporter construct, we found that 16:0, 18:1(n-9), 18:1(n-7), 18:2(n-6) and 20:4(n-6) NAEs stimulated AP-1-dependent transcriptional activity up to 2-fold, with maximal stimulation at approx. 10-15 microM. Higher NAE concentrations had toxic effects mediated by alterations in mitochondrial energy metabolism. The AP-1 stimulation appeared to be mediated by ERK but not JNK or p38 signalling pathways, because all NAEs stimulated ERK1/ERK2 phosphorylation without having any effect on JNK or p38 kinases. Also, overexpression of dominant negative ERK1/ERK2 kinases completely abolished NAE-induced AP-1 activation. In contrast with 18:1(n-9) NAE and anandamide, the cannabinoid receptor agonist WIN 55,212-2 did not stimulate AP-1 activity and inhibited ERK phosphorylation. The NAE-mediated effects were not attenuated by pertussis toxin and appeared to be NAE-specific, as a close structural analogue, oleyl alcohol, failed to induce ERK phosphorylation. The data support our hypothesis that the major saturated and monounsaturated NAEs are signalling molecules acting through intracellular targets without participation of cannabinoid receptors.
Full Text
The Full Text of this article is available as a PDF (307.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berdyshev E. V. Cannabinoid receptors and the regulation of immune response. Chem Phys Lipids. 2000 Nov;108(1-2):169–190. doi: 10.1016/s0009-3084(00)00195-x. [DOI] [PubMed] [Google Scholar]
- Berdyshev E. V., Schmid P. C., Dong Z., Schmid H. H. Stress-induced generation of N-acylethanolamines in mouse epidermal JB6 P+ cells. Biochem J. 2000 Mar 1;346(Pt 2):369–374. [PMC free article] [PubMed] [Google Scholar]
- Bernstein L. R., Ferris D. K., Colburn N. H., Sobel M. E. A family of mitogen-activated protein kinase-related proteins interacts in vivo with activator protein-1 transcription factor. J Biol Chem. 1994 Apr 1;269(13):9401–9404. [PubMed] [Google Scholar]
- Berridge M. V., Tan A. S. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys. 1993 Jun;303(2):474–482. doi: 10.1006/abbi.1993.1311. [DOI] [PubMed] [Google Scholar]
- Bokoch G. M., Katada T., Northup J. K., Hewlett E. L., Gilman A. G. Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J Biol Chem. 1983 Feb 25;258(4):2072–2075. [PubMed] [Google Scholar]
- Bouaboula M., Perrachon S., Milligan L., Canat X., Rinaldi-Carmona M., Portier M., Barth F., Calandra B., Pecceu F., Lupker J. A selective inverse agonist for central cannabinoid receptor inhibits mitogen-activated protein kinase activation stimulated by insulin or insulin-like growth factor 1. Evidence for a new model of receptor/ligand interactions. J Biol Chem. 1997 Aug 29;272(35):22330–22339. doi: 10.1074/jbc.272.35.22330. [DOI] [PubMed] [Google Scholar]
- Bouaboula M., Poinot-Chazel C., Bourrié B., Canat X., Calandra B., Rinaldi-Carmona M., Le Fur G., Casellas P. Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1. Biochem J. 1995 Dec 1;312(Pt 2):637–641. doi: 10.1042/bj3120637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouaboula M., Poinot-Chazel C., Marchand J., Canat X., Bourrié B., Rinaldi-Carmona M., Calandra B., Le Fur G., Casellas P. Signaling pathway associated with stimulation of CB2 peripheral cannabinoid receptor. Involvement of both mitogen-activated protein kinase and induction of Krox-24 expression. Eur J Biochem. 1996 May 1;237(3):704–711. doi: 10.1111/j.1432-1033.1996.0704p.x. [DOI] [PubMed] [Google Scholar]
- Chen N. Y., Ma W. Y., Huang C., Ding M., Dong Z. Activation of PKC is required for arsenite-induced signal transduction. J Environ Pathol Toxicol Oncol. 2000;19(3):297–305. [PubMed] [Google Scholar]
- Cravatt B. F., Giang D. K., Mayfield S. P., Boger D. L., Lerner R. A., Gilula N. B. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996 Nov 7;384(6604):83–87. doi: 10.1038/384083a0. [DOI] [PubMed] [Google Scholar]
- De Petrocellis L., Orlando P., Di Marzo V. Anandamide, an endogenous cannabinomimetic substance, modulates rat brain protein kinase C in vitro. Biochem Mol Biol Int. 1995 Aug;36(6):1127–1133. [PubMed] [Google Scholar]
- Derkinderen P., Ledent C., Parmentier M., Girault J. A. Cannabinoids activate p38 mitogen-activated protein kinases through CB1 receptors in hippocampus. J Neurochem. 2001 May;77(3):957–960. doi: 10.1046/j.1471-4159.2001.00333.x. [DOI] [PubMed] [Google Scholar]
- Derocq J. M., Bouaboula M., Marchand J., Rinaldi-Carmona M., Ségui M., Casellas P. The endogenous cannabinoid anandamide is a lipid messenger activating cell growth via a cannabinoid receptor-independent pathway in hematopoietic cell lines. FEBS Lett. 1998 Apr 3;425(3):419–425. doi: 10.1016/s0014-5793(98)00275-0. [DOI] [PubMed] [Google Scholar]
- Devane W. A., Hanus L., Breuer A., Pertwee R. G., Stevenson L. A., Griffin G., Gibson D., Mandelbaum A., Etinger A., Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992 Dec 18;258(5090):1946–1949. doi: 10.1126/science.1470919. [DOI] [PubMed] [Google Scholar]
- Di Marzo V. 'Endocannabinoids' and other fatty acid derivatives with cannabimimetic properties: biochemistry and possible physiopathological relevance. Biochim Biophys Acta. 1998 Jun 15;1392(2-3):153–175. doi: 10.1016/s0005-2760(98)00042-3. [DOI] [PubMed] [Google Scholar]
- Di Marzo V., Bisogno T., De Petrocellis L., Melck D., Martin B. R. Cannabimimetic fatty acid derivatives: the anandamide family and other endocannabinoids. Curr Med Chem. 1999 Aug;6(8):721–744. [PubMed] [Google Scholar]
- Dong Z., Lavrovsky V., Colburn N. H. Transformation reversion induced in JB6 RT101 cells by AP-1 inhibitors. Carcinogenesis. 1995 Apr;16(4):749–756. doi: 10.1093/carcin/16.4.749. [DOI] [PubMed] [Google Scholar]
- Dong Z., Ma W., Huang C., Yang C. S. Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (-)-epigallocatechin gallate, and theaflavins. Cancer Res. 1997 Oct 1;57(19):4414–4419. [PubMed] [Google Scholar]
- Frost J. A., Geppert T. D., Cobb M. H., Feramisco J. R. A requirement for extracellular signal-regulated kinase (ERK) function in the activation of AP-1 by Ha-Ras, phorbol 12-myristate 13-acetate, and serum. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3844–3848. doi: 10.1073/pnas.91.9.3844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hannun Y. A. Functions of ceramide in coordinating cellular responses to stress. Science. 1996 Dec 13;274(5294):1855–1859. doi: 10.1126/science.274.5294.1855. [DOI] [PubMed] [Google Scholar]
- Hansen H. S., Moesgaard B., Hansen H. H., Petersen G. N-Acylethanolamines and precursor phospholipids - relation to cell injury. Chem Phys Lipids. 2000 Nov;108(1-2):135–150. doi: 10.1016/s0009-3084(00)00192-4. [DOI] [PubMed] [Google Scholar]
- Hillard C. J., Campbell W. B. Biochemistry and pharmacology of arachidonylethanolamide, a putative endogenous cannabinoid. J Lipid Res. 1997 Dec;38(12):2383–2398. [PubMed] [Google Scholar]
- Hillard C. J., Jarrahian A. The movement of N-arachidonoylethanolamine (anandamide) across cellular membranes. Chem Phys Lipids. 2000 Nov;108(1-2):123–134. doi: 10.1016/s0009-3084(00)00191-2. [DOI] [PubMed] [Google Scholar]
- Howlett A. C., Mukhopadhyay S. Cellular signal transduction by anandamide and 2-arachidonoylglycerol. Chem Phys Lipids. 2000 Nov;108(1-2):53–70. doi: 10.1016/s0009-3084(00)00187-0. [DOI] [PubMed] [Google Scholar]
- Huang C., Li J., Ma W. Y., Dong Z. JNK activation is required for JB6 cell transformation induced by tumor necrosis factor-alpha but not by 12-O-tetradecanoylphorbol-13-acetate. J Biol Chem. 1999 Oct 15;274(42):29672–29676. doi: 10.1074/jbc.274.42.29672. [DOI] [PubMed] [Google Scholar]
- Huang C., Ma W. Y., Young M. R., Colburn N., Dong Z. Shortage of mitogen-activated protein kinase is responsible for resistance to AP-1 transactivation and transformation in mouse JB6 cells. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):156–161. doi: 10.1073/pnas.95.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huwiler A., Pfeilschifter J., van den Bosch H. Nitric oxide donors induce stress signaling via ceramide formation in rat renal mesangial cells. J Biol Chem. 1999 Mar 12;274(11):7190–7195. doi: 10.1074/jbc.274.11.7190. [DOI] [PubMed] [Google Scholar]
- Jacobsson S. O., Fowler C. J. Characterization of palmitoylethanolamide transport in mouse Neuro-2a neuroblastoma and rat RBL-2H3 basophilic leukaemia cells: comparison with anandamide. Br J Pharmacol. 2001 Apr;132(8):1743–1754. doi: 10.1038/sj.bjp.0704029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katada T., Bokoch G. M., Smigel M. D., Ui M., Gilman A. G. The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and the inhibition of adenylate cyclase in S49 lymphoma cyc- and wild type membranes. J Biol Chem. 1984 Mar 25;259(6):3586–3595. [PubMed] [Google Scholar]
- Kuwae T., Shiota Y., Schmid P. C., Krebsbach R., Schmid H. H. Biosynthesis and turnover of anandamide and other N-acylethanolamines in peritoneal macrophages. FEBS Lett. 1999 Oct 1;459(1):123–127. doi: 10.1016/s0014-5793(99)01226-0. [DOI] [PubMed] [Google Scholar]
- Li J. J., Dong Z., Dawson M. I., Colburn N. H. Inhibition of tumor promoter-induced transformation by retinoids that transrepress AP-1 without transactivating retinoic acid response element. Cancer Res. 1996 Feb 1;56(3):483–489. [PubMed] [Google Scholar]
- Liu J., Gao B., Mirshahi F., Sanyal A. J., Khanolkar A. D., Makriyannis A., Kunos G. Functional CB1 cannabinoid receptors in human vascular endothelial cells. Biochem J. 2000 Mar 15;346(Pt 3):835–840. [PMC free article] [PubMed] [Google Scholar]
- Matsuda L. A., Lolait S. J., Brownstein M. J., Young A. C., Bonner T. I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990 Aug 9;346(6284):561–564. doi: 10.1038/346561a0. [DOI] [PubMed] [Google Scholar]
- Matsuda L. A. Molecular aspects of cannabinoid receptors. Crit Rev Neurobiol. 1997;11(2-3):143–166. doi: 10.1615/critrevneurobiol.v11.i2-3.30. [DOI] [PubMed] [Google Scholar]
- Mechoulam R., Fride E., Di Marzo V. Endocannabinoids. Eur J Pharmacol. 1998 Oct 16;359(1):1–18. doi: 10.1016/s0014-2999(98)00649-9. [DOI] [PubMed] [Google Scholar]
- Melck D., Rueda D., Galve-Roperh I., De Petrocellis L., Guzmán M., Di Marzo V. Involvement of the cAMP/protein kinase A pathway and of mitogen-activated protein kinase in the anti-proliferative effects of anandamide in human breast cancer cells. FEBS Lett. 1999 Dec 17;463(3):235–240. doi: 10.1016/s0014-5793(99)01639-7. [DOI] [PubMed] [Google Scholar]
- Munro S., Thomas K. L., Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993 Sep 2;365(6441):61–65. doi: 10.1038/365061a0. [DOI] [PubMed] [Google Scholar]
- Natarajan V., Reddy P. V., Schmid P. C., Schmid H. H. N-Acylation of ethanolamine phospholipids in canine myocardium. Biochim Biophys Acta. 1982 Aug 18;712(2):342–355. doi: 10.1016/0005-2760(82)90352-6. [DOI] [PubMed] [Google Scholar]
- Pertwee R. G. Pharmacology of cannabinoid receptor ligands. Curr Med Chem. 1999 Aug;6(8):635–664. [PubMed] [Google Scholar]
- Piomelli D., Beltramo M., Glasnapp S., Lin S. Y., Goutopoulos A., Xie X. Q., Makriyannis A. Structural determinants for recognition and translocation by the anandamide transporter. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5802–5807. doi: 10.1073/pnas.96.10.5802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rinaldi-Carmona M., Le Duigou A., Oustric D., Barth F., Bouaboula M., Carayon P., Casellas P., Le Fur G. Modulation of CB1 cannabinoid receptor functions after a long-term exposure to agonist or inverse agonist in the Chinese hamster ovary cell expression system. J Pharmacol Exp Ther. 1998 Dec;287(3):1038–1047. [PubMed] [Google Scholar]
- Rueda D., Galve-Roperh I., Haro A., Guzmán M. The CB(1) cannabinoid receptor is coupled to the activation of c-Jun N-terminal kinase. Mol Pharmacol. 2000 Oct;58(4):814–820. doi: 10.1124/mol.58.4.814. [DOI] [PubMed] [Google Scholar]
- Schmid H. H. Pathways and mechanisms of N-acylethanolamine biosynthesis: can anandamide be generated selectively? Chem Phys Lipids. 2000 Nov;108(1-2):71–87. doi: 10.1016/s0009-3084(00)00188-2. [DOI] [PubMed] [Google Scholar]
- Schmid H. H., Schmid P. C., Natarajan V. N-acylated glycerophospholipids and their derivatives. Prog Lipid Res. 1990;29(1):1–43. doi: 10.1016/0163-7827(90)90004-5. [DOI] [PubMed] [Google Scholar]
- Schmid P. C., Krebsbach R. J., Perry S. R., Dettmer T. M., Maasson J. L., Schmid H. H. Occurrence and postmortem generation of anandamide and other long-chain N-acylethanolamines in mammalian brain. FEBS Lett. 1995 Nov 13;375(1-2):117–120. doi: 10.1016/0014-5793(95)01194-j. [DOI] [PubMed] [Google Scholar]
- Schmid P. C., Reddy P. V., Natarajan V., Schmid H. H. Metabolism of N-acylethanolamine phospholipids by a mammalian phosphodiesterase of the phospholipase D type. J Biol Chem. 1983 Aug 10;258(15):9302–9306. [PubMed] [Google Scholar]
- Schmid P. C., Zuzarte-Augustin M. L., Schmid H. H. Properties of rat liver N-acylethanolamine amidohydrolase. J Biol Chem. 1985 Nov 15;260(26):14145–14149. [PubMed] [Google Scholar]
- Sugita M., Willians M., Dulaney J. T., Moser H. W. Ceramidase and ceramide synthesis in human kidney and cerebellum. Description of a new alkaline ceramidase. Biochim Biophys Acta. 1975 Jul 22;398(1):125–131. doi: 10.1016/0005-2760(75)90176-9. [DOI] [PubMed] [Google Scholar]
- Sugiura T., Kondo S., Sukagawa A., Tonegawa T., Nakane S., Yamashita A., Ishima Y., Waku K. Transacylase-mediated and phosphodiesterase-mediated synthesis of N-arachidonoylethanolamine, an endogenous cannabinoid-receptor ligand, in rat brain microsomes. Comparison with synthesis from free arachidonic acid and ethanolamine. Eur J Biochem. 1996 Aug 15;240(1):53–62. doi: 10.1111/j.1432-1033.1996.0053h.x. [DOI] [PubMed] [Google Scholar]
- Ueda N., Kurahashi Y., Yamamoto S., Tokunaga T. Partial purification and characterization of the porcine brain enzyme hydrolyzing and synthesizing anandamide. J Biol Chem. 1995 Oct 6;270(40):23823–23827. doi: 10.1074/jbc.270.40.23823. [DOI] [PubMed] [Google Scholar]
- Ueda N., Puffenbarger R. A., Yamamoto S., Deutsch D. G. The fatty acid amide hydrolase (FAAH). Chem Phys Lipids. 2000 Nov;108(1-2):107–121. doi: 10.1016/s0009-3084(00)00190-0. [DOI] [PubMed] [Google Scholar]
- Wartmann M., Campbell D., Subramanian A., Burstein S. H., Davis R. J. The MAP kinase signal transduction pathway is activated by the endogenous cannabinoid anandamide. FEBS Lett. 1995 Feb 13;359(2-3):133–136. doi: 10.1016/0014-5793(95)00027-7. [DOI] [PubMed] [Google Scholar]
- Wiesner D. A., Dawson G. Staurosporine induces programmed cell death in embryonic neurons and activation of the ceramide pathway. J Neurochem. 1996 Apr;66(4):1418–1425. doi: 10.1046/j.1471-4159.1996.66041418.x. [DOI] [PubMed] [Google Scholar]
- Wiesner D. A., Kilkus J. P., Gottschalk A. R., Quintáns J., Dawson G. Anti-immunoglobulin-induced apoptosis in WEHI 231 cells involves the slow formation of ceramide from sphingomyelin and is blocked by bcl-XL. J Biol Chem. 1997 Apr 11;272(15):9868–9876. doi: 10.1074/jbc.272.15.9868. [DOI] [PubMed] [Google Scholar]