Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Nov 15;360(Pt 1):143–150. doi: 10.1042/0264-6021:3600143

Identification of cathepsin L as a differentially expressed message associated with skeletal muscle wasting.

C Deval 1, S Mordier 1, C Obled 1, D Bechet 1, L Combaret 1, D Attaix 1, M Ferrara 1
PMCID: PMC1222211  PMID: 11696001

Abstract

Alteration of skeletal muscle protein breakdown is a hallmark of a set of pathologies, including sepsis, with negative consequences for recovery. The aim of the present study was to search for muscle markers associated with protein loss, which could help in predicting and understanding pathological wasting. With the use of differential display reverse transcription-PCR, we screened differentially expressed genes in muscle from septic rats in a long-lasting catabolic state. One clone was isolated, confirmed as being overexpressed in septic skeletal muscle and identified as encoding the lysosomal cysteine endopeptidase cathepsin L. Northern- and Western-blot analysis of cathepsin L in gastrocnemius or tibialis anterior muscles of septic rats confirmed an elevation (up to 3-fold) of both mRNA and protein levels as early as 2 days post-infection, and a further increase 6 days post-infection (up to 13-fold). At the same time, the increase in mRNAs encoding other lysosomal endopeptidases or components of the ubiquitin-proteasome pathway did not exceed 4-fold. Cathepsin L mRNA was also increased in tibialis anterior muscle of rats treated with the glucocorticoid analogue, dexamethasone, or rats bearing the Yoshida Sarcoma. The increase in cathepsin L mRNA was reduced by 40% when the tumour-bearing animals were treated with pentoxifylline, an inhibitor of tumour necrosis factor-alpha production. In conclusion, these results demonstrate a positive and direct correlation between cathepsin L mRNA and protein level and the intensity of proteolysis, and identify cathepsin L as an appropriate early marker of muscle wasting. Cathepsin L presumably participates in the pathological response leading to muscle loss, with glucocorticoids and tumour necrosis factor-alpha potentially being involved in the up-regulation of cathepsin L.

Full Text

The Full Text of this article is available as a PDF (313.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breuille D., Voisin L., Contrepois M., Arnal M., Rose F., Obled C. A sustained rat model for studying the long-lasting catabolic state of sepsis. Infect Immun. 1999 Mar;67(3):1079–1085. doi: 10.1128/iai.67.3.1079-1085.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breuillé D., Arnal M., Rambourdin F., Bayle G., Levieux D., Obled C. Sustained modifications of protein metabolism in various tissues in a rat model of long-lasting sepsis. Clin Sci (Lond) 1998 Apr;94(4):413–423. doi: 10.1042/cs0940413. [DOI] [PubMed] [Google Scholar]
  3. Buck M., Chojkier M. Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO J. 1996 Apr 15;15(8):1753–1765. [PMC free article] [PubMed] [Google Scholar]
  4. Chang H. R., Bistrian B. The role of cytokines in the catabolic consequences of infection and injury. JPEN J Parenter Enteral Nutr. 1998 May-Jun;22(3):156–166. doi: 10.1177/0148607198022003156. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Combaret L., Rallière C., Taillandier D., Tanaka K., Attaix D. Manipulation of the ubiquitin-proteasome pathway in cachexia: pentoxifylline suppresses the activation of 20S and 26S proteasomes in muscles from tumor-bearing rats. Mol Biol Rep. 1999 Apr;26(1-2):95–101. doi: 10.1023/a:1006955832323. [DOI] [PubMed] [Google Scholar]
  7. Combaret L., Taillandier D., Voisin L., Samuels S. E., Boespflug-Tanguy O., Attaix D. No alteration in gene expression of components of the ubiquitin-proteasome proteolytic pathway in dystrophin-deficient muscles. FEBS Lett. 1996 Sep 16;393(2-3):292–296. doi: 10.1016/0014-5793(96)00910-6. [DOI] [PubMed] [Google Scholar]
  8. Consalez G. G., Corradi A., Ciarmatori S., Bossolasco M., Malgaretti N., Stayton C. L. A new method to screen clones from differential display experiments prior to RNA studies. Trends Genet. 1996 Nov;12(11):455–456. doi: 10.1016/0168-9525(96)99993-x. [DOI] [PubMed] [Google Scholar]
  9. Costas M., Trapp T., Pereda M. P., Sauer J., Rupprecht R., Nahmod V. E., Reul J. M., Holsboer F., Arzt E. Molecular and functional evidence for in vitro cytokine enhancement of human and murine target cell sensitivity to glucocorticoids. TNF-alpha priming increases glucocorticoid inhibition of TNF-alpha-induced cytotoxicity/apoptosis. J Clin Invest. 1996 Sep 15;98(6):1409–1416. doi: 10.1172/JCI118928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dardevet D., Sornet C., Taillandier D., Savary I., Attaix D., Grizard J. Sensitivity and protein turnover response to glucocorticoids are different in skeletal muscle from adult and old rats. Lack of regulation of the ubiquitin-proteasome proteolytic pathway in aging. J Clin Invest. 1995 Nov;96(5):2113–2119. doi: 10.1172/JCI118264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DeForge L. E., Remick D. G. Kinetics of TNF, IL-6, and IL-8 gene expression in LPS-stimulated human whole blood. Biochem Biophys Res Commun. 1991 Jan 15;174(1):18–24. doi: 10.1016/0006-291x(91)90478-p. [DOI] [PubMed] [Google Scholar]
  12. Dean D. C., Newby R. F., Bourgeois S. Regulation of fibronectin biosynthesis by dexamethasone, transforming growth factor beta, and cAMP in human cell lines. J Cell Biol. 1988 Jun;106(6):2159–2170. doi: 10.1083/jcb.106.6.2159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. DiPiro J. T. Cytokine networks with infection: mycobacterial infections, leishmaniasis, human immunodeficiency virus infection, and sepsis. Pharmacotherapy. 1997 Mar-Apr;17(2):205–223. [PubMed] [Google Scholar]
  14. Ertel W., Morrison M. H., Wang P., Ba Z. F., Ayala A., Chaudry I. H. The complex pattern of cytokines in sepsis. Association between prostaglandins, cachectin, and interleukins. Ann Surg. 1991 Aug;214(2):141–148. doi: 10.1097/00000658-199108000-00008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grimble R. F. Interaction between nutrients, pro-inflammatory cytokines and inflammation. Clin Sci (Lond) 1996 Aug;91(2):121–130. doi: 10.1042/cs0910121. [DOI] [PubMed] [Google Scholar]
  16. Hasselgren P. O., Fischer J. E. Counter-regulatory hormones and mechanisms in amino acid metabolism with special reference to the catabolic response in skeletal muscle. Curr Opin Clin Nutr Metab Care. 1999 Jan;2(1):9–14. doi: 10.1097/00075197-199901000-00003. [DOI] [PubMed] [Google Scholar]
  17. Hershko A., Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–479. doi: 10.1146/annurev.biochem.67.1.425. [DOI] [PubMed] [Google Scholar]
  18. Hong D. H., Forsberg N. E. Effects of dexamethasone on protein degradation and protease gene expression in rat L8 myotube cultures. Mol Cell Endocrinol. 1995 Feb 27;108(1-2):199–209. doi: 10.1016/0303-7207(95)03476-n. [DOI] [PubMed] [Google Scholar]
  19. Huang J., Forsberg N. E. Role of calpain in skeletal-muscle protein degradation. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12100–12105. doi: 10.1073/pnas.95.21.12100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ishidoh K., Towatari T., Imajoh S., Kawasaki H., Kominami E., Katunuma N., Suzuki K. Molecular cloning and sequencing of cDNA for rat cathepsin L. FEBS Lett. 1987 Oct 19;223(1):69–73. doi: 10.1016/0014-5793(87)80511-2. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Liang P., Averboukh L., Pardee A. B. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res. 1993 Jul 11;21(14):3269–3275. doi: 10.1093/nar/21.14.3269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Liang P., Pardee A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992 Aug 14;257(5072):967–971. doi: 10.1126/science.1354393. [DOI] [PubMed] [Google Scholar]
  24. Lowell B. B., Ruderman N. B., Goodman M. N. Evidence that lysosomes are not involved in the degradation of myofibrillar proteins in rat skeletal muscle. Biochem J. 1986 Feb 15;234(1):237–240. doi: 10.1042/bj2340237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mason R. W., Wilcox D., Wikstrom P., Shaw E. N. The identification of active forms of cysteine proteinases in Kirsten-virus-transformed mouse fibroblasts by use of a specific radiolabelled inhibitor. Biochem J. 1989 Jan 1;257(1):125–129. doi: 10.1042/bj2570125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mordier S., Deval C., Béchet D., Tassa A., Ferrara M. Leucine limitation induces autophagy and activation of lysosome-dependent proteolysis in C2C12 myotubes through a mammalian target of rapamycin-independent signaling pathway. J Biol Chem. 2000 Sep 22;275(38):29900–29906. doi: 10.1074/jbc.M003633200. [DOI] [PubMed] [Google Scholar]
  27. Ménard R., Carmona E., Takebe S., Dufour E., Plouffe C., Mason P., Mort J. S. Autocatalytic processing of recombinant human procathepsin L. Contribution of both intermolecular and unimolecular events in the processing of procathepsin L in vitro. J Biol Chem. 1998 Feb 20;273(8):4478–4484. doi: 10.1074/jbc.273.8.4478. [DOI] [PubMed] [Google Scholar]
  28. Paek I., Axel R. Glucocorticoids enhance stability of human growth hormone mRNA. Mol Cell Biol. 1987 Apr;7(4):1496–1507. doi: 10.1128/mcb.7.4.1496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Semmler J., Gebert U., Eisenhut T., Moeller J., Schönharting M. M., Alléra A., Endres S. Xanthine derivatives: comparison between suppression of tumour necrosis factor-alpha production and inhibition of cAMP phosphodiesterase activity. Immunology. 1993 Apr;78(4):520–525. [PMC free article] [PubMed] [Google Scholar]
  31. Smith S. M., Kane S. E., Gal S., Mason R. W., Gottesman M. M. Glycosylation of procathepsin L does not account for species molecular-mass differences and is not required for proteolytic activity. Biochem J. 1989 Sep 15;262(3):931–938. doi: 10.1042/bj2620931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sorimachi H., Ishiura S., Suzuki K. Structure and physiological function of calpains. Biochem J. 1997 Dec 15;328(Pt 3):721–732. doi: 10.1042/bj3280721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sugden P. H., Fuller S. J. Regulation of protein turnover in skeletal and cardiac muscle. Biochem J. 1991 Jan 1;273(Pt 1):21–37. doi: 10.1042/bj2730021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tisdale M. J. Isolation of a novel cancer cachectic factor. Proc Nutr Soc. 1997 Jul;56(2):777–783. doi: 10.1079/pns19970078. [DOI] [PubMed] [Google Scholar]
  35. Tournu C., Obled A., Roux M. P., Deval C., Ferrara M., Béchet D. M. Glucose controls cathepsin expression in Ras-transformed fibroblasts. Arch Biochem Biophys. 1998 Dec 1;360(1):15–24. doi: 10.1006/abbi.1998.0916. [DOI] [PubMed] [Google Scholar]
  36. Voisin L., Breuillé D., Combaret L., Pouyet C., Taillandier D., Aurousseau E., Obled C., Attaix D. Muscle wasting in a rat model of long-lasting sepsis results from the activation of lysosomal, Ca2+ -activated, and ubiquitin-proteasome proteolytic pathways. J Clin Invest. 1996 Apr 1;97(7):1610–1617. doi: 10.1172/JCI118586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wing S. S., Goldberg A. L. Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting. Am J Physiol. 1993 Apr;264(4 Pt 1):E668–E676. doi: 10.1152/ajpendo.1993.264.4.E668. [DOI] [PubMed] [Google Scholar]
  38. Yeatman T. J., Mao W. Identification of a differentially-expressed message associated with colon cancer liver metastasis using an improved method of differential display. Nucleic Acids Res. 1995 Oct 11;23(19):4007–4008. doi: 10.1093/nar/23.19.4007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. el-Dwairi Q., Comtois A., Guo Y., Hussain S. N. Endotoxin-induced skeletal muscle contractile dysfunction: contribution of nitric oxide synthases. Am J Physiol. 1998 Mar;274(3 Pt 1):C770–C779. doi: 10.1152/ajpcell.1998.274.3.C770. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES