Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Nov 15;360(Pt 1):225–231. doi: 10.1042/0264-6021:3600225

Implications of adenylate kinase-governed equilibrium of adenylates on contents of free magnesium in plant cells and compartments.

A U Igamberdiev 1, L A Kleczkowski 1
PMCID: PMC1222221  PMID: 11696011

Abstract

On the basis of the equilibrium of adenylate kinase (AK; EC 2.7.4.3), which interconverts MgATP and free AMP with MgADP and free ADP, an approach has been worked out to calculate concentrations of free magnesium (Mg(2+)), based on concentrations of total ATP, ADP and AMP in plant tissues and in individual subcellular compartments. Based on reported total adenylate contents, [Mg(2+)] in plant tissues and organelles varies significantly depending on light and dark regimes, plant age and developmental stage. In steady-state conditions, [Mg(2+)] in chloroplasts is similar in light and darkness (in the millimolar range), whereas in the cytosol it is very low in the light and increases to about 0.4 mM in darkness. During the dark-to-light transition (photosynthetic induction), the [Mg(2+)] in chloroplasts falls to low values (0.2 mM or less), corresponding to a delay in photosynthetic oxygen evolution. This delay is considered to result from lower activities of Mg-dependent enzymes in the Calvin cycle. In mitochondria, the changes in [Mg(2+)] are similar but smoother. On the other hand, when the transition from light to darkness is considered, an initial increase in [Mg(2+)] occurs in both chloroplasts and mitochondria, which may be of importance for the control of key regulatory enzymes (e.g. mitochondrial malic enzyme and pyruvate dehydrogenase complex) and for processes connected with light-enhanced dark respiration. A rationale is presented for a possible role of [MgATP]/[MgADP] ratio (rather than [ATP(total)]/[ADP(total)]) as an important component of metabolic cellular control. It is postulated that assays of total adenylates may provide an accurate measure of [Mg(2+)] in plant tissues/cells and subcellular compartments, given that the adenylates are equilibrated by AK.

Full Text

The Full Text of this article is available as a PDF (164.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson D. E. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry. 1968 Nov;7(11):4030–4034. doi: 10.1021/bi00851a033. [DOI] [PubMed] [Google Scholar]
  2. Blair J. M. Magnesium and the aconitase equilibrium: determination of apparent stability constants of mangnesium substrate complexes from equilibrium data. Eur J Biochem. 1969 Mar;8(2):287–291. doi: 10.1111/j.1432-1033.1969.tb00526.x. [DOI] [PubMed] [Google Scholar]
  3. Blair J. M. Magnesium, potassium, and the adenylate kinase equilibrium. Magnesium as a feedback signal from the adenine nucleotide pool. Eur J Biochem. 1970 Apr;13(2):384–390. doi: 10.1111/j.1432-1033.1970.tb00940.x. [DOI] [PubMed] [Google Scholar]
  4. Chen R. Plant NADP-dependent isocitrate dehydrogenases are predominantly localized in the cytosol. Planta. 1998 Dec;207(2):280–285. doi: 10.1007/s004250050484. [DOI] [PubMed] [Google Scholar]
  5. Gardeström P., Wigge B. Influence of Photorespiration on ATP/ADP Ratios in the Chloroplasts, Mitochondria, and Cytosol, Studied by Rapid Fractionation of Barley (Hordeum vulgare) Protoplasts. Plant Physiol. 1988 Sep;88(1):69–76. doi: 10.1104/pp.88.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hampp R., Goller M., Ziegler H. Adenylate Levels, Energy Charge, and Phosphorylation Potential during Dark-Light and Light-Dark Transition in Chloroplasts, Mitochondria, and Cytosol of Mesophyll Protoplasts from Avena sativa L. Plant Physiol. 1982 Feb;69(2):448–455. doi: 10.1104/pp.69.2.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hatch R. C., Booth N. H., Clark J. D., Crawford L. M., Jr, Kitzman J. V., Wallner B. Antagonism of xylazine sedation in dogs by 4-aminopyridine and yohimbine. Am J Vet Res. 1982 Jun;43(6):1009–1014. [PubMed] [Google Scholar]
  8. Kemp R. G., Krebs E. G. Binding of metabolites by phosphofructokinase. Biochemistry. 1967 Feb;6(2):423–434. doi: 10.1021/bi00854a009. [DOI] [PubMed] [Google Scholar]
  9. Khoo J. C., Russell P. J., Jr Adenylate kinase from bakers' yeast. IV. Substrate and inhibitor structurll requirements. J Biol Chem. 1970 Aug 25;245(16):4163–4167. [PubMed] [Google Scholar]
  10. Kleczkowski L. A., Randall D. D. Maize leaf adenylate kinase : purification and partial characterization. Plant Physiol. 1986 Aug;81(4):1110–1114. doi: 10.1104/pp.81.4.1110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Krause G. H. Light-induced movement of magnesium ions in intact chloroplasts. Spectroscopic determination with Eriochrome Blue SE. Biochim Biophys Acta. 1977 Jun 9;460(3):500–510. doi: 10.1016/0005-2728(77)90088-3. [DOI] [PubMed] [Google Scholar]
  12. Lilley R. M., Stitt M., Mader G., Heldt H. W. Rapid fractionation of wheat leaf protoplasts using membrane filtration : the determination of metabolite levels in the chloroplasts, cytosol, and mitochondria. Plant Physiol. 1982 Oct;70(4):965–970. doi: 10.1104/pp.70.4.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lorimer G. H., Badger M. R., Andrews T. J. The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry. 1976 Feb 10;15(3):529–536. doi: 10.1021/bi00648a012. [DOI] [PubMed] [Google Scholar]
  14. Miernyk J. A., Randall D. D. Some properties of pea mitochondrial phospho-pyruvate dehydrogenase-phosphatase. Plant Physiol. 1987 Feb;83(2):311–315. doi: 10.1104/pp.83.2.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Murakami S., Strotmann H. Adenylate kinase bound to the envelope membranes of spinach chloroplasts. Arch Biochem Biophys. 1978 Jan 15;185(1):30–38. doi: 10.1016/0003-9861(78)90140-6. [DOI] [PubMed] [Google Scholar]
  16. O'Sullivan W. J., Smithers G. W. Stability constants for biologically important metal-ligand complexes. Methods Enzymol. 1979;63:294–336. doi: 10.1016/0076-6879(79)63014-8. [DOI] [PubMed] [Google Scholar]
  17. Panov A., Scarpa A. Mg2+ control of respiration in isolated rat liver mitochondria. Biochemistry. 1996 Oct 1;35(39):12849–12856. doi: 10.1021/bi960139f. [DOI] [PubMed] [Google Scholar]
  18. Phillips R. C., George P., Rutman R. J. Thermodynamic studies of the formation and ionization of the magnesium(II) complexes of ADP and ATP over the pH range 5 to 9. J Am Chem Soc. 1966 Jun 20;88(12):2631–2640. doi: 10.1021/ja00964a002. [DOI] [PubMed] [Google Scholar]
  19. Portis A. R. Evidence of a Low Stromal Mg Concentration in Intact Chloroplasts in the Dark: I. STUDIES WITH THE IONOPHORE A23187. Plant Physiol. 1981 May;67(5):985–989. doi: 10.1104/pp.67.5.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Portis A. R., Jr, Heldt H. W. Light-dependent changes of the Mg2+ concentration in the stroma in relation to the Mg2+ dependency of CO2 fixation in intact chloroplasts. Biochim Biophys Acta. 1976 Dec 6;449(3):434–436. doi: 10.1016/0005-2728(76)90154-7. [DOI] [PubMed] [Google Scholar]
  21. Purich D. L., Fromm H. J. Studies on factors influencing enzyme responses to adenylate energy charge. J Biol Chem. 1972 Jan 10;247(1):249–255. [PubMed] [Google Scholar]
  22. Roberts JKM., Aubert S., Gout E., Bligny R., Douce R. Cooperation and Competition between Adenylate Kinase, Nucleoside Diphosphokinase, Electron Transport, and ATP Synthase in Plant Mitochondria Studied by 31P-Nuclear Magnetic Resonance. Plant Physiol. 1997 Jan;113(1):191–199. doi: 10.1104/pp.113.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rose I. A. The state of magnesium in cells as estimated from the adenylate kinase equilibrium. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1079–1086. doi: 10.1073/pnas.61.3.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Santarius K. A., Heber U. Changes in the intracellular levels of ATP, ADP, AMP and P1 and regulatory function of the adenylate system in leaf cells during photosynthesis. Biochim Biophys Acta. 1965 May 25;102(1):39–54. doi: 10.1016/0926-6585(65)90201-3. [DOI] [PubMed] [Google Scholar]
  25. Schunemann D., Borchert S., Flugge U. I., Heldt H. W. ADP/ATP Translocator from Pea Root Plastids (Comparison with Translocators from Spinach Chloroplasts and Pea Leaf Mitochondria). Plant Physiol. 1993 Sep;103(1):131–137. doi: 10.1104/pp.103.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shaul O., Hilgemann D. W., de-Almeida-Engler J., Van Montagu M., Inz D., Galili G. Cloning and characterization of a novel Mg(2+)/H(+) exchanger. EMBO J. 1999 Jul 15;18(14):3973–3980. doi: 10.1093/emboj/18.14.3973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stitt M., Lilley R. M., Heldt H. W. Adenine nucleotide levels in the cytosol, chloroplasts, and mitochondria of wheat leaf protoplasts. Plant Physiol. 1982 Oct;70(4):971–977. doi: 10.1104/pp.70.4.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tovar-Méndez A., Mújica-Jiménez C., Muñoz-Clares R. A. Physiological implications of the kinetics of maize leaf phosphoenolpyruvate carboxylase. Plant Physiol. 2000 May;123(1):149–160. doi: 10.1104/pp.123.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wild K., Grafmüller R., Wagner E., Schulz G. E. Structure, catalysis and supramolecular assembly of adenylate kinase from maize. Eur J Biochem. 1997 Dec 1;250(2):326–331. doi: 10.1111/j.1432-1033.1997.0326a.x. [DOI] [PubMed] [Google Scholar]
  30. Williams G. D., Mosher T. J., Smith M. B. Simultaneous determination of intracellular magnesium and pH from the three 31P NMR Chemical shifts of ATP. Anal Biochem. 1993 Nov 1;214(2):458–467. doi: 10.1006/abio.1993.1523. [DOI] [PubMed] [Google Scholar]
  31. Zimmermann G., Kelly G. J., Latzko E. Purification and properties of spinach leaf cytoplasmic fructose-1,6-bisphosphatase. J Biol Chem. 1978 Sep 10;253(17):5952–5956. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES