Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Nov 15;360(Pt 1):247–253. doi: 10.1042/0264-6021:3600247

Neuronal nitric oxide synthase generates superoxide from the oxygenase domain.

H Yoneyama 1, A Yamamoto 1, H Kosaka 1
PMCID: PMC1222224  PMID: 11696014

Abstract

When l-arginine is depleted, neuronal nitric oxide synthase (nNOS) has been reported to generate superoxide. A flavoprotein module construct of nNOS has been demonstrated to be sufficient for superoxide production. In contrast, nNOS was reported not to be involved in superoxide formation, because such formation occurred with a mixture of the boiled enzyme and redox-active cofactors. We aimed to resolve these controversial issues by examining superoxide generation, without the addition of redox-active cofactors, by recombinant wild-type nNOS and by C415A-nNOS, which has a mutation in the haem proximal site. In a superoxide-sensitive adrenochrome assay, the initial lag period of C415A-nNOS was increased 2-fold compared with that of native nNOS. With ESR using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide, prominent signals of the superoxide adduct were obtained with wild-type nNOS, whereas an enzyme preparation boiled for 5 min did not produce superoxide. Higher concentrations of NaCN (10 mM) decreased superoxide formation by 63%. Although the activity of the reductase domain was intact, superoxide generation from C415A-nNOS was decreased markedly, to only 10% of that of the wild-type enzyme. These results demonstrate that nNOS truly catalyses superoxide formation, that this involves the oxygenase domain, and that full-length nNOS hinders the reductase domain from producing superoxide.

Full Text

The Full Text of this article is available as a PDF (147.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benkusky N. A., Lewis S. J., Kooy N. W. Peroxynitrite-mediated attenuation of alpha- and beta-adrenoceptor agonist-induced vascular responses in vivo. Eur J Pharmacol. 1999 Jan 8;364(2-3):151–158. doi: 10.1016/s0014-2999(98)00791-2. [DOI] [PubMed] [Google Scholar]
  2. Berry E. A., Trumpower B. L. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Anal Biochem. 1987 Feb 15;161(1):1–15. doi: 10.1016/0003-2697(87)90643-9. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Furukawa A., Okuyama E., Sumi T., Ichikawa Y. Molecular cloning of sheep and goat ferredoxin reductase messenger ribonucleic acids, and identification of an alternatively spliced form of sheep ferredoxin reductase. Biol Reprod. 1997 May;56(5):1336–1342. doi: 10.1095/biolreprod56.5.1336. [DOI] [PubMed] [Google Scholar]
  5. Gorren A. C., List B. M., Schrammel A., Pitters E., Hemmens B., Werner E. R., Schmidt K., Mayer B. Tetrahydrobiopterin-free neuronal nitric oxide synthase: evidence for two identical highly anticooperative pteridine binding sites. Biochemistry. 1996 Dec 24;35(51):16735–16745. doi: 10.1021/bi961931j. [DOI] [PubMed] [Google Scholar]
  6. Ito K., Akiyama Y. In vivo analysis of integration of membrane proteins in Escherichia coli. Mol Microbiol. 1991 Sep;5(9):2243–2253. doi: 10.1111/j.1365-2958.1991.tb02154.x. [DOI] [PubMed] [Google Scholar]
  7. Klatt P., Schmidt K., Werner E. R., Mayer B. Determination of nitric oxide synthase cofactors: heme, FAD, FMN, and tetrahydrobiopterin. Methods Enzymol. 1996;268:358–365. doi: 10.1016/s0076-6879(96)68038-0. [DOI] [PubMed] [Google Scholar]
  8. Kumar V. B., Bernardo A. E., Alshaher M. M., Buddhiraju M., Purushothaman R., Morley J. E. Rapid assay for nitric oxide synthase using thin-layer chromatography. Anal Biochem. 1999 Apr 10;269(1):17–20. doi: 10.1006/abio.1999.4013. [DOI] [PubMed] [Google Scholar]
  9. Kumura E., Yoshimine T., Iwatsuki K. I., Yamanaka K., Tanaka S., Hayakawa T., Shiga T., Kosaka H. Generation of nitric oxide and superoxide during reperfusion after focal cerebral ischemia in rats. Am J Physiol. 1996 Mar;270(3 Pt 1):C748–C752. doi: 10.1152/ajpcell.1996.270.3.C748. [DOI] [PubMed] [Google Scholar]
  10. Li H., Förstermann U. Nitric oxide in the pathogenesis of vascular disease. J Pathol. 2000 Feb;190(3):244–254. doi: 10.1002/(SICI)1096-9896(200002)190:3<244::AID-PATH575>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  11. Martásek P., Miller R. T., Liu Q., Roman L. J., Salerno J. C., Migita C. T., Raman C. S., Gross S. S., Ikeda-Saito M., Masters B. S. The C331A mutant of neuronal nitric-oxide synthase is defective in arginine binding. J Biol Chem. 1998 Dec 25;273(52):34799–34805. doi: 10.1074/jbc.273.52.34799. [DOI] [PubMed] [Google Scholar]
  12. Masters B. S., McMillan K., Sheta E. A., Nishimura J. S., Roman L. J., Martasek P. Neuronal nitric oxide synthase, a modular enzyme formed by convergent evolution: structure studies of a cysteine thiolate-liganded heme protein that hydroxylates L-arginine to produce NO. as a cellular signal. FASEB J. 1996 Apr;10(5):552–558. doi: 10.1096/fasebj.10.5.8621055. [DOI] [PubMed] [Google Scholar]
  13. Mayer B., Klatt P., List B. M., Harteneck C., Schmidt K. Large-scale purification of rat brain nitric oxide synthase from baculovirus overexpression system. Methods Enzymol. 1996;268:420–427. doi: 10.1016/s0076-6879(96)68044-6. [DOI] [PubMed] [Google Scholar]
  14. McMillan K., Bredt D. S., Hirsch D. J., Snyder S. H., Clark J. E., Masters B. S. Cloned, expressed rat cerebellar nitric oxide synthase contains stoichiometric amounts of heme, which binds carbon monoxide. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11141–11145. doi: 10.1073/pnas.89.23.11141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miller R. T., Martásek P., Roman L. J., Nishimura J. S., Masters B. S. Involvement of the reductase domain of neuronal nitric oxide synthase in superoxide anion production. Biochemistry. 1997 Dec 9;36(49):15277–15284. doi: 10.1021/bi972022c. [DOI] [PubMed] [Google Scholar]
  16. Nathan C., Xie Q. W. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994 Sep 23;78(6):915–918. doi: 10.1016/0092-8674(94)90266-6. [DOI] [PubMed] [Google Scholar]
  17. Ogura T., Yokoyama T., Fujisawa H., Kurashima Y., Esumi H. Structural diversity of neuronal nitric oxide synthase mRNA in the nervous system. Biochem Biophys Res Commun. 1993 Jun 30;193(3):1014–1022. doi: 10.1006/bbrc.1993.1726. [DOI] [PubMed] [Google Scholar]
  18. Ostrowski J., Barber M. J., Rueger D. C., Miller B. E., Siegel L. M., Kredich N. M. Characterization of the flavoprotein moieties of NADPH-sulfite reductase from Salmonella typhimurium and Escherichia coli. Physicochemical and catalytic properties, amino acid sequence deduced from DNA sequence of cysJ, and comparison with NADPH-cytochrome P-450 reductase. J Biol Chem. 1989 Sep 25;264(27):15796–15808. [PubMed] [Google Scholar]
  19. Pou S., Keaton L., Surichamorn W., Rosen G. M. Mechanism of superoxide generation by neuronal nitric-oxide synthase. J Biol Chem. 1999 Apr 2;274(14):9573–9580. doi: 10.1074/jbc.274.14.9573. [DOI] [PubMed] [Google Scholar]
  20. Pou S., Pou W. S., Bredt D. S., Snyder S. H., Rosen G. M. Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem. 1992 Dec 5;267(34):24173–24176. [PubMed] [Google Scholar]
  21. Raman C. S., Li H., Martásek P., Král V., Masters B. S., Poulos T. L. Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell. 1998 Dec 23;95(7):939–950. doi: 10.1016/s0092-8674(00)81718-3. [DOI] [PubMed] [Google Scholar]
  22. Richards M. K., Clague M. J., Marletta M. A. Characterization of C415 mutants of neuronal nitric oxide synthase. Biochemistry. 1996 Jun 18;35(24):7772–7780. doi: 10.1021/bi952582g. [DOI] [PubMed] [Google Scholar]
  23. Roman L. J., Sheta E. A., Martasek P., Gross S. S., Liu Q., Masters B. S. High-level expression of functional rat neuronal nitric oxide synthase in Escherichia coli. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8428–8432. doi: 10.1073/pnas.92.18.8428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Salerno J. C., Harris D. E., Irizarry K., Patel B., Morales A. J., Smith S. M., Martasek P., Roman L. J., Masters B. S., Jones C. L. An autoinhibitory control element defines calcium-regulated isoforms of nitric oxide synthase. J Biol Chem. 1997 Nov 21;272(47):29769–29777. doi: 10.1074/jbc.272.47.29769. [DOI] [PubMed] [Google Scholar]
  25. Vásquez-Vivar J., Hogg N., Martásek P., Karoui H., Pritchard K. A., Jr, Kalyanaraman B. Tetrahydrobiopterin-dependent inhibition of superoxide generation from neuronal nitric oxide synthase. J Biol Chem. 1999 Sep 17;274(38):26736–26742. doi: 10.1074/jbc.274.38.26736. [DOI] [PubMed] [Google Scholar]
  26. Vásquez-Vivar J., Kalyanaraman B., Martásek P., Hogg N., Masters B. S., Karoui H., Tordo P., Pritchard K. A., Jr Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9220–9225. doi: 10.1073/pnas.95.16.9220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Xia Y., Roman L. J., Masters B. S., Zweier J. L. Inducible nitric-oxide synthase generates superoxide from the reductase domain. J Biol Chem. 1998 Aug 28;273(35):22635–22639. doi: 10.1074/jbc.273.35.22635. [DOI] [PubMed] [Google Scholar]
  28. Xia Y., Tsai A. L., Berka V., Zweier J. L. Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem. 1998 Oct 2;273(40):25804–25808. doi: 10.1074/jbc.273.40.25804. [DOI] [PubMed] [Google Scholar]
  29. Xia Y., Zweier J. L. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6954–6958. doi: 10.1073/pnas.94.13.6954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Xu K. Y. A key negative control experiment provides evidence that nitric oxide synthase does not catalyze superoxide formation. FEBS Lett. 2000 Sep 22;481(3):306–307. doi: 10.1016/s0014-5793(00)01999-2. [DOI] [PubMed] [Google Scholar]
  31. Xu K. Y. Does nitric oxide synthase catalyze the synthesis of superoxide? FEBS Lett. 2000 Jun 2;474(2-3):252–253. doi: 10.1016/s0014-5793(00)01485-x. [DOI] [PubMed] [Google Scholar]
  32. Yazawa M., Sakuma M., Yagi K. Calmodulins from muscles of marine invertebrates, scallop and sea anemone. J Biochem. 1980 May;87(5):1313–1320. doi: 10.1093/oxfordjournals.jbchem.a132869. [DOI] [PubMed] [Google Scholar]
  33. Yoneyama H., Kosaka H., Ohnishi T., Kawazoe T., Mizoguchi K., Ichikawa Y. Reaction of neuronal nitric oxide synthase with the nitric oxide spin-trapping agent, iron complexed with N-dithiocarboxysarcosine. Eur J Biochem. 1999 Dec;266(3):771–777. doi: 10.1046/j.1432-1327.1999.00888.x. [DOI] [PubMed] [Google Scholar]
  34. Zhang Z. G., Chopp M., Gautam S., Zaloga C., Zhang R. L., Schmidt H. H., Pollock J. S., Förstermann U. Upregulation of neuronal nitric oxide synthase and mRNA, and selective sparing of nitric oxide synthase-containing neurons after focal cerebral ischemia in rat. Brain Res. 1994 Aug 15;654(1):85–95. doi: 10.1016/0006-8993(94)91574-1. [DOI] [PubMed] [Google Scholar]
  35. Zhou M. S., Kosaka H., Tian R. X., Abe Y., Chen Q. H., Yoneyama H., Yamamoto A., Zhang L. L-Arginine improves endothelial function in renal artery of hypertensive Dahl rats. J Hypertens. 2001 Mar;19(3):421–429. doi: 10.1097/00004872-200103000-00010. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES