Abstract
The Na(+)-dependent glucose transporter SGLT1 and the facilitated fructose transporter GLUT5 absorb sugars from the intestinal lumen across the brush-border membrane into the cells. The activity of these transport systems is known to be regulated primarily by diet and development. The cloning of these transporters has led to a surge of studies on cellular mechanisms regulating intestinal sugar transport. However, the small intestine can be a difficult organ to study, because its cells are continuously differentiating along the villus, and because the function of absorptive cells depends on both their state of maturity and their location along the villus axis. In this review, I describe the typical patterns of regulation of transport activity by dietary carbohydrate, Na(+) and fibre, how these patterns are influenced by circadian rhythms, and how they vary in different species and during development. I then describe the molecular mechanisms underlying these regulatory patterns. The expression of these transporters is tightly linked to the villus architecture; hence, I also review the regulatory processes occurring along the crypt-villus axis. Regulation of glucose transport by diet may involve increased transcription of SGLT1 mainly in crypt cells. As cells migrate to the villus, the mRNA is degraded, and transporter proteins are then inserted into the membrane, leading to increases in glucose transport about a day after an increase in carbohydrate levels. In the SGLT1 model, transport activity in villus cells cannot be modulated by diet. In contrast, GLUT5 regulation by the diet seems to involve de novo synthesis of GLUT5 mRNA synthesis and protein in cells lining the villus, leading to increases in fructose transport a few hours after consumption of diets containing fructose. In the GLUT5 model, transport activity can be reprogrammed in mature enterocytes lining the villus column. Innovative experimental approaches are needed to increase our understanding of sugar transport regulation in the small intestine. I close by suggesting specific areas of research that may yield important information about this interesting, but difficult, topic.
Full Text
The Full Text of this article is available as a PDF (283.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Afik D., Darken B. W., Karasov W. H. Is diet shifting facilitated by modulation of intestinal nutrient uptake? Test of an adaptational hypothesis in yellow-rumped warblers. Physiol Zool. 1997 Mar-Apr;70(2):213–221. doi: 10.1086/639580. [DOI] [PubMed] [Google Scholar]
- Afik D., McWilliams S. R., Karasov W. H. A test for passive absorption of glucose in yellow-rumped warblers and its ecological implications. Physiol Zool. 1997 May-Jun;70(3):370–377. doi: 10.1086/639618. [DOI] [PubMed] [Google Scholar]
- Aschenbach J. R., Bhatia S. K., Pfannkuche H., Gäbel G. Glucose is absorbed in a sodium-dependent manner from forestomach contents of sheep. J Nutr. 2000 Nov;130(11):2797–2801. doi: 10.1093/jn/130.11.2797. [DOI] [PubMed] [Google Scholar]
- Aschenbach J. R., Wehning H., Kurze M., Schaberg E., Nieper H., Burckhardt G., Gäbel G. Functional and molecular biological evidence of SGLT-1 in the ruminal epithelium of sheep. Am J Physiol Gastrointest Liver Physiol. 2000 Jul;279(1):G20–G27. doi: 10.1152/ajpgi.2000.279.1.G20. [DOI] [PubMed] [Google Scholar]
- Barrett M. P., Walmsley A. R., Gould G. W. Structure and function of facilitative sugar transporters. Curr Opin Cell Biol. 1999 Aug;11(4):496–502. doi: 10.1016/s0955-0674(99)80072-6. [DOI] [PubMed] [Google Scholar]
- Bindslev N., Hirayama B. A., Wright E. M. Na/D-glucose cotransport and SGLT1 expression in hen colon correlates with dietary Na+. Comp Biochem Physiol A Physiol. 1997 Oct;118(2):219–227. doi: 10.1016/s0300-9629(97)00071-6. [DOI] [PubMed] [Google Scholar]
- Blakemore S. J., Aledo J. C., James J., Campbell F. C., Lucocq J. M., Hundal H. S. The GLUT5 hexose transporter is also localized to the basolateral membrane of the human jejunum. Biochem J. 1995 Jul 1;309(Pt 1):7–12. doi: 10.1042/bj3090007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buddington R. K., Buddington K. K., Sunvold G. D. Influence of fermentable fiber on small intestinal dimensions and transport of glucose and proline in dogs. Am J Vet Res. 1999 Mar;60(3):354–358. [PubMed] [Google Scholar]
- Buddington R. K., Diamond J. M. Ontogenetic development of intestinal nutrient transporters. Annu Rev Physiol. 1989;51:601–619. doi: 10.1146/annurev.ph.51.030189.003125. [DOI] [PubMed] [Google Scholar]
- Buddington R. K., Diamond J. M. Ontogenetic development of monosaccharide and amino acid transporters in rabbit intestine. Am J Physiol. 1990 Oct;259(4 Pt 1):G544–G555. doi: 10.1152/ajpgi.1990.259.4.G544. [DOI] [PubMed] [Google Scholar]
- Buddington R. K. Does the natural diet influence the intestine's ability to regulate glucose absorption? J Comp Physiol B. 1987;157(5):677–688. doi: 10.1007/BF00700989. [DOI] [PubMed] [Google Scholar]
- Buddington R. K., Malo C., Sangild P. T., Elnif J. Intestinal transport of monosaccharides and amino acids during postnatal development of mink. Am J Physiol Regul Integr Comp Physiol. 2000 Dec;279(6):R2287–R2296. doi: 10.1152/ajpregu.2000.279.6.R2287. [DOI] [PubMed] [Google Scholar]
- Burant C. F., Flink S., DePaoli A. M., Chen J., Lee W. S., Hediger M. A., Buse J. B., Chang E. B. Small intestine hexose transport in experimental diabetes. Increased transporter mRNA and protein expression in enterocytes. J Clin Invest. 1994 Feb;93(2):578–585. doi: 10.1172/JCI117010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burant C. F., Saxena M. Rapid reversible substrate regulation of fructose transporter expression in rat small intestine and kidney. Am J Physiol. 1994 Jul;267(1 Pt 1):G71–G79. doi: 10.1152/ajpgi.1994.267.1.G71. [DOI] [PubMed] [Google Scholar]
- Burant C. F., Takeda J., Brot-Laroche E., Bell G. I., Davidson N. O. Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem. 1992 Jul 25;267(21):14523–14526. [PubMed] [Google Scholar]
- Castelló A., Gumá A., Sevilla L., Furriols M., Testar X., Palacín M., Zorzano A. Regulation of GLUT5 gene expression in rat intestinal mucosa: regional distribution, circadian rhythm, perinatal development and effect of diabetes. Biochem J. 1995 Jul 1;309(Pt 1):271–277. doi: 10.1042/bj3090271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caviedes-Vidal E., Karasov W. H. Glucose and amino acid absorption in house sparrow intestine and its dietary modulation. Am J Physiol. 1996 Sep;271(3 Pt 2):R561–R568. doi: 10.1152/ajpregu.1996.271.3.R561. [DOI] [PubMed] [Google Scholar]
- Chediack J. G., Caviedes-Vidal E., Karasov W. H., Pestchanker M. Passive absorption of hydrophilic carbohydrate probes by the house sparrow Passer domesticus. J Exp Biol. 2001 Feb;204(Pt 4):723–731. doi: 10.1242/jeb.204.4.723. [DOI] [PubMed] [Google Scholar]
- Cheeseman C. I. Upregulation of SGLT-1 transport activity in rat jejunum induced by GLP-2 infusion in vivo. Am J Physiol. 1997 Dec;273(6 Pt 2):R1965–R1971. doi: 10.1152/ajpregu.1997.273.6.R1965. [DOI] [PubMed] [Google Scholar]
- Collie N. L., Zhu Z., Jordan S., Reeve J. R., Jr Oxyntomodulin stimulates intestinal glucose uptake in rats. Gastroenterology. 1997 Jun;112(6):1961–1970. doi: 10.1053/gast.1997.v112.pm9178688. [DOI] [PubMed] [Google Scholar]
- Corpe C. P., Bovelander F. J., Hoekstra J. H., Burant C. F. The small intestinal fructose transporters: site of dietary perception and evidence for diurnal and fructose sensitive control elements. Biochim Biophys Acta. 1998 Apr 24;1402(3):229–238. doi: 10.1016/s0167-4889(97)00155-9. [DOI] [PubMed] [Google Scholar]
- Corpe C. P., Burant C. F. Hexose transporter expression in rat small intestine: effect of diet on diurnal variations. Am J Physiol. 1996 Jul;271(1 Pt 1):G211–G216. doi: 10.1152/ajpgi.1996.271.1.G211. [DOI] [PubMed] [Google Scholar]
- Corpe C. P., Burant C. F., Hoekstra J. H. Intestinal fructose absorption: clinical and molecular aspects. J Pediatr Gastroenterol Nutr. 1999 Apr;28(4):364–374. doi: 10.1097/00005176-199904000-00004. [DOI] [PubMed] [Google Scholar]
- Corpe C., Sreenan S., Burant C. Effects of type-2 diabetes and troglitazone on the expression patterns of small intestinal sugar transporters and PPAR-gamma in the Zucker diabetic fatty rat. Digestion. 2001;63(2):116–123. doi: 10.1159/000051879. [DOI] [PubMed] [Google Scholar]
- Crouzoulon G., Korieh A. Fructose transport by rat intestinal brush border membrane vesicles. Effect of high fructose diet followed by return to standard diet. Comp Biochem Physiol A Comp Physiol. 1991;100(1):175–182. doi: 10.1016/0300-9629(91)90203-o. [DOI] [PubMed] [Google Scholar]
- David E. S., Cingari D. S., Ferraris R. P. Dietary induction of intestinal fructose absorption in weaning rats. Pediatr Res. 1995 Jun;37(6):777–782. doi: 10.1203/00006450-199506000-00017. [DOI] [PubMed] [Google Scholar]
- De La Horra M. C., Cano M., Peral M. J., Calonge M. L., Ilundáin A. A. Hormonal regulation of chicken intestinal NHE and SGLT-1 activities. Am J Physiol Regul Integr Comp Physiol. 2001 Mar;280(3):R655–R660. doi: 10.1152/ajpregu.2001.280.3.R655. [DOI] [PubMed] [Google Scholar]
- Debnam E. S., Denholm E. E., Grimble G. K. Acute and chronic exposure of rat intestinal mucosa to dextran promotes SGLTI-mediated glucose transport. Eur J Clin Invest. 1998 Aug;28(8):651–658. doi: 10.1046/j.1365-2362.1998.00352.x. [DOI] [PubMed] [Google Scholar]
- Debnam E. S., Sharp P. A. Acute and chronic effects of pancreatic glucagon on sugar transport across the brush-border and basolateral membranes of rat jejunal enterocytes. Exp Physiol. 1993 Mar;78(2):197–207. doi: 10.1113/expphysiol.1993.sp003680. [DOI] [PubMed] [Google Scholar]
- Debnam E. S., Smith M. W., Sharp P. A., Srai S. K., Turvey A., Keable S. J. The effects of streptozotocin diabetes on sodium-glucose transporter (SGLT1) expression and function in rat jejunal and ileal villus-attached enterocytes. Pflugers Arch. 1995 Jun;430(2):151–159. doi: 10.1007/BF00374645. [DOI] [PubMed] [Google Scholar]
- Desjeux J. F., Wright E. M. Trente ans de travaux sur la malabsorption congénitale du glucose et du galactose: du phénotype au génotype. Ann Gastroenterol Hepatol (Paris) 1993 Oct;29(5):263–268. [PubMed] [Google Scholar]
- Diamond J. M., Karasov W. H., Cary C., Enders D., Yung R. Effect of dietary carbohydrate on monosaccharide uptake by mouse small intestine in vitro. J Physiol. 1984 Apr;349:419–440. doi: 10.1113/jphysiol.1984.sp015165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diamond J. M., Karasov W. H., Phan D., Carpenter F. L. Digestive physiology is a determinant of foraging bout frequency in hummingbirds. Nature. 1986 Mar 6;320(6057):62–63. doi: 10.1038/320062a0. [DOI] [PubMed] [Google Scholar]
- Dong R., Srai S. K., Debnam E., Smith M. Transcriptional and translational control over sodium-glucose-linked transporter (SGLT1) gene expression in adult rat small intestine. FEBS Lett. 1997 Apr 7;406(1-2):79–82. doi: 10.1016/s0014-5793(97)00246-9. [DOI] [PubMed] [Google Scholar]
- Donowitz M., De La Horra C., Calonge M. L., Wood I. S., Dyer J., Gribble S. M., De Medina F. S., Tse C. M., Shirazi-Beechey S. P., Ilundain A. A. In birds, NHE2 is major brush-border Na+/H+ exchanger in colon and is increased by a low-NaCl diet. Am J Physiol. 1998 Jun;274(6 Pt 2):R1659–R1669. doi: 10.1152/ajpregu.1998.274.6.R1659. [DOI] [PubMed] [Google Scholar]
- Dudeja P. K., Wali R. K., Klitzke A., Brasitus T. A. Intestinal D-glucose transport and membrane fluidity along crypt-villus axis of streptozocin-induced diabetic rats. Am J Physiol. 1990 Oct;259(4 Pt 1):G571–G577. doi: 10.1152/ajpgi.1990.259.4.G571. [DOI] [PubMed] [Google Scholar]
- Dyer J., Barker P. J., Shirazi-Beechey S. P. Nutrient regulation of the intestinal Na+/glucose co-transporter (SGLT1) gene expression. Biochem Biophys Res Commun. 1997 Jan 23;230(3):624–629. doi: 10.1006/bbrc.1996.6018. [DOI] [PubMed] [Google Scholar]
- Dyer J., Hosie K. B., Shirazi-Beechey S. P. Nutrient regulation of human intestinal sugar transporter (SGLT1) expression. Gut. 1997 Jul;41(1):56–59. doi: 10.1136/gut.41.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Díez-Sampedro A., Eskandari S., Wright E. M., Hirayama B. A. Na+-to-sugar stoichiometry of SGLT3. Am J Physiol Renal Physiol. 2001 Feb;280(2):F278–F282. doi: 10.1152/ajprenal.2001.280.2.F278. [DOI] [PubMed] [Google Scholar]
- Ferraris R. P., Carey H. V. Intestinal transport during fasting and malnutrition. Annu Rev Nutr. 2000;20:195–219. doi: 10.1146/annurev.nutr.20.1.195. [DOI] [PubMed] [Google Scholar]
- Ferraris R. P., Casirola D. M., Vinnakota R. R. Dietary carbohydrate enhances intestinal sugar transport in diabetic mice. Diabetes. 1993 Nov;42(11):1579–1587. doi: 10.2337/diab.42.11.1579. [DOI] [PubMed] [Google Scholar]
- Ferraris R. P., Diamond J. M. Crypt/villus site of substrate-dependent regulation of mouse intestinal glucose transporters. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5868–5872. doi: 10.1073/pnas.90.12.5868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferraris R. P., Diamond J. M. Specific regulation of intestinal nutrient transporters by their dietary substrates. Annu Rev Physiol. 1989;51:125–141. doi: 10.1146/annurev.ph.51.030189.001013. [DOI] [PubMed] [Google Scholar]
- Ferraris R. P., Diamond J. Crypt-villus site of glucose transporter induction by dietary carbohydrate in mouse intestine. Am J Physiol. 1992 Jun;262(6 Pt 1):G1069–G1073. doi: 10.1152/ajpgi.1992.262.6.G1069. [DOI] [PubMed] [Google Scholar]
- Ferraris R. P., Diamond J. Regulation of intestinal sugar transport. Physiol Rev. 1997 Jan;77(1):257–302. doi: 10.1152/physrev.1997.77.1.257. [DOI] [PubMed] [Google Scholar]
- Ferraris R. P., Villenas S. A., Diamond J. Regulation of brush-border enzyme activities and enterocyte migration rates in mouse small intestine. Am J Physiol. 1992 Jun;262(6 Pt 1):G1047–G1059. doi: 10.1152/ajpgi.1992.262.6.G1047. [DOI] [PubMed] [Google Scholar]
- Ferraris R. P., Villenas S. A., Hirayama B. A., Diamond J. Effect of diet on glucose transporter site density along the intestinal crypt-villus axis. Am J Physiol. 1992 Jun;262(6 Pt 1):G1060–G1068. doi: 10.1152/ajpgi.1992.262.6.G1060. [DOI] [PubMed] [Google Scholar]
- Ferraris R. P., Yasharpour S., Lloyd K. C., Mirzayan R., Diamond J. M. Luminal glucose concentrations in the gut under normal conditions. Am J Physiol. 1990 Nov;259(5 Pt 1):G822–G837. doi: 10.1152/ajpgi.1990.259.5.G822. [DOI] [PubMed] [Google Scholar]
- Freeman T. C., Wood I. S., Sirinathsinghji D. J., Beechey R. B., Dyer J., Shirazi-Beechey S. P. The expression of the Na+/glucose cotransporter (SGLT1) gene in lamb small intestine during postnatal development. Biochim Biophys Acta. 1993 Mar 14;1146(2):203–212. doi: 10.1016/0005-2736(93)90357-6. [DOI] [PubMed] [Google Scholar]
- Garriga C., Moretó M., Planas J. M. Effects of resalination on intestinal glucose transport in chickens adapted to low Na+ intakes. Exp Physiol. 2000 Jul;85(4):371–378. [PubMed] [Google Scholar]
- Garriga C., Moretó M., Planas J. M. Hexose transport in the apical and basolateral membranes of enterocytes in chickens adapted to high and low NaCl intakes. J Physiol. 1999 Jan 1;514(Pt 1):189–199. doi: 10.1111/j.1469-7793.1999.189af.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goda T. Regulation of the expression of carbohydrate digestion/absorption-related genes. Br J Nutr. 2000 Dec;84 (Suppl 2):S245–S248. doi: 10.1079/096582197388626. [DOI] [PubMed] [Google Scholar]
- Grubb B. R. Ion transport across the jejunum in normal and cystic fibrosis mice. Am J Physiol. 1995 Mar;268(3 Pt 1):G505–G513. doi: 10.1152/ajpgi.1995.268.3.G505. [DOI] [PubMed] [Google Scholar]
- Hardin J. A., Wong J. K., Cheeseman C. I., Gall D. G. Effect of luminal epidermal growth factor on enterocyte glucose and proline transport. Am J Physiol. 1996 Sep;271(3 Pt 1):G509–G515. doi: 10.1152/ajpgi.1996.271.3.G509. [DOI] [PubMed] [Google Scholar]
- Hediger M. A., Coady M. J., Ikeda T. S., Wright E. M. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. 1987 Nov 26-Dec 2Nature. 330(6146):379–381. doi: 10.1038/330379a0. [DOI] [PubMed] [Google Scholar]
- Helliwell P. A., Richardson M., Affleck J., Kellett G. L. Regulation of GLUT5, GLUT2 and intestinal brush-border fructose absorption by the extracellular signal-regulated kinase, p38 mitogen-activated kinase and phosphatidylinositol 3-kinase intracellular signalling pathways: implications for adaptation to diabetes. Biochem J. 2000 Aug 15;350(Pt 1):163–169. [PMC free article] [PubMed] [Google Scholar]
- Helliwell P. A., Richardson M., Affleck J., Kellett G. L. Stimulation of fructose transport across the intestinal brush-border membrane by PMA is mediated by GLUT2 and dynamically regulated by protein kinase C. Biochem J. 2000 Aug 15;350(Pt 1):149–154. [PMC free article] [PubMed] [Google Scholar]
- Hill T. M., Schmidt S. P., Russell R. W., Thomas E. E., Wolfe D. F. Comparison of urea treatment with established methods of sorghum grain preservation and processing on site and extent of starch digestion by cattle. J Anim Sci. 1991 Nov;69(11):4570–4576. doi: 10.2527/1991.69114570x. [DOI] [PubMed] [Google Scholar]
- Hirsh A. J., Yao S. Y., Young J. D., Cheeseman C. I. Inhibition of glucose absorption in the rat jejunum: a novel action of alpha-D-glucosidase inhibitors. Gastroenterology. 1997 Jul;113(1):205–211. doi: 10.1016/s0016-5085(97)70096-9. [DOI] [PubMed] [Google Scholar]
- Hoekstra J. H., van Kempen A. A., Bijl S. B., Kneepkens C. M. Fructose breath hydrogen tests. Arch Dis Child. 1993 Jan;68(1):136–138. doi: 10.1136/adc.68.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoekstra J. H., van den Aker J. H., Kneepkens C. M., Stellaard F., Geypens B., Ghoos Y. F. Evaluation of 13CO2 breath tests for the detection of fructose malabsorption. J Lab Clin Med. 1996 Mar;127(3):303–309. doi: 10.1016/s0022-2143(96)90099-2. [DOI] [PubMed] [Google Scholar]
- Hwang E. S., Hirayama B. A., Wright E. M. Distribution of the SGLT1 Na+/glucose cotransporter and mRNA along the crypt-villus axis of rabbit small intestine. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1208–1217. doi: 10.1016/0006-291x(91)92067-t. [DOI] [PubMed] [Google Scholar]
- Jaso M. J., Vial M., Moretó M. Hexose accumulation by enterocytes from the jejunum and rectum of chickens adapted to high and low NaCl intake. Pflugers Arch. 1995 Feb;429(4):511–516. doi: 10.1007/BF00704156. [DOI] [PubMed] [Google Scholar]
- Jiang L., David E. S., Espina N., Ferraris R. P. GLUT-5 expression in neonatal rats: crypt-villus location and age-dependent regulation. Am J Physiol Gastrointest Liver Physiol. 2001 Sep;281(3):G666–G674. doi: 10.1152/ajpgi.2001.281.3.G666. [DOI] [PubMed] [Google Scholar]
- Jiang L., Ferraris R. P. Developmental reprogramming of rat GLUT-5 requires de novo mRNA and protein synthesis. Am J Physiol Gastrointest Liver Physiol. 2001 Jan;280(1):G113–G120. doi: 10.1152/ajpgi.2001.280.1.G113. [DOI] [PubMed] [Google Scholar]
- Jiang L., Lawsky H., Coloso R. M., Dudley M. A., Ferraris R. P. Intestinal perfusion induces rapid activation of immediate-early genes in weaning rats. Am J Physiol Regul Integr Comp Physiol. 2001 Oct;281(4):R1274–R1282. doi: 10.1152/ajpregu.2001.281.4.R1274. [DOI] [PubMed] [Google Scholar]
- Karasov W. H., Cork S. J. Glucose absorption by a nectarivorous bird: the passive pathway is paramount. Am J Physiol. 1994 Jul;267(1 Pt 1):G18–G26. doi: 10.1152/ajpgi.1994.267.1.G18. [DOI] [PubMed] [Google Scholar]
- Kellett G. L., Helliwell P. A. The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane. Biochem J. 2000 Aug 15;350(Pt 1):155–162. [PMC free article] [PubMed] [Google Scholar]
- Kellett G. L. The facilitated component of intestinal glucose absorption. J Physiol. 2001 Mar 15;531(Pt 3):585–595. doi: 10.1111/j.1469-7793.2001.0585h.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khan J. M., Wingertzahn M. A., Teichberg S., Vancurova I., Harper R. G., Wapnir R. A. Development of the intestinal SGLT1 transporter in rats. Mol Genet Metab. 2000 Mar;69(3):233–239. doi: 10.1006/mgme.2000.2973. [DOI] [PubMed] [Google Scholar]
- Kishi K., Takase S., Goda T. Enhancement of sucrase-isomaltase gene expression induced by luminally administered fructose in rat jejunum. J Nutr Biochem. 1999 Jan;10(1):8–12. doi: 10.1016/s0955-2863(98)00071-0. [DOI] [PubMed] [Google Scholar]
- Kishi K., Tanaka T., Igawa M., Takase S., Goda T. Sucrase-isomaltase and hexose transporter gene expressions are coordinately enhanced by dietary fructose in rat jejunum. J Nutr. 1999 May;129(5):953–956. doi: 10.1093/jn/129.5.953. [DOI] [PubMed] [Google Scholar]
- Kojima T., Nishimura M., Yajima T., Kuwata T., Suzuki Y., Goda T., Takase S., Harada E. Developmental changes in the regional Na+/glucose transporter mRNA along the small intestine of suckling rats. Comp Biochem Physiol B Biochem Mol Biol. 1999 Jan;122(1):89–95. doi: 10.1016/s0305-0491(98)10159-1. [DOI] [PubMed] [Google Scholar]
- Lescale-Matys L., Dyer J., Scott D., Freeman T. C., Wright E. M., Shirazi-Beechey S. P. Regulation of the ovine intestinal Na+/glucose co-transporter (SGLT1) is dissociated from mRNA abundance. Biochem J. 1993 Apr 15;291(Pt 2):435–440. doi: 10.1042/bj2910435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levey D. J., Karasov W. H. Digestive modulation in a seasonal frugivore, the American robin (Turdus migratorius). Am J Physiol. 1992 Apr;262(4 Pt 1):G711–G718. doi: 10.1152/ajpgi.1992.262.4.G711. [DOI] [PubMed] [Google Scholar]
- Maffia M., Acierno R., Cillo E., Storelli C. Na(+)-D-glucose cotransport by intestinal BBMVs of the Antarctic fish Trematomus bernacchii. Am J Physiol. 1996 Dec;271(6 Pt 2):R1576–R1583. doi: 10.1152/ajpregu.1996.271.6.R1576. [DOI] [PubMed] [Google Scholar]
- Mahraoui L., Rodolosse A., Barbat A., Dussaulx E., Zweibaum A., Rousset M., Brot-Laroche E. Presence and differential expression of SGLT1, GLUT1, GLUT2, GLUT3 and GLUT5 hexose-transporter mRNAs in Caco-2 cell clones in relation to cell growth and glucose consumption. Biochem J. 1994 Mar 15;298(Pt 3):629–633. doi: 10.1042/bj2980629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahraoui L., Takeda J., Mesonero J., Chantret I., Dussaulx E., Bell G. I., Brot-Laroche E. Regulation of expression of the human fructose transporter (GLUT5) by cyclic AMP. Biochem J. 1994 Jul 1;301(Pt 1):169–175. doi: 10.1042/bj3010169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malo C. Kinetic evidence for heterogeneity in Na+-D-glucose cotransport systems in the normal human fetal small intestine. Biochim Biophys Acta. 1988 Feb 18;938(2):181–188. doi: 10.1016/0005-2736(88)90157-5. [DOI] [PubMed] [Google Scholar]
- Martín M. G., Wang J., Solorzano-Vargas R. S., Lam J. T., Turk E., Wright E. M. Regulation of the human Na(+)-glucose cotransporter gene, SGLT1, by HNF-1 and Sp1. Am J Physiol Gastrointest Liver Physiol. 2000 Apr;278(4):G591–G603. doi: 10.1152/ajpgi.2000.278.4.G591. [DOI] [PubMed] [Google Scholar]
- Matosin-Matekalo M., Mesonero J. E., Laroche T. J., Lacasa M., Brot-Laroche E. Glucose and thyroid hormone co-regulate the expression of the intestinal fructose transporter GLUT5. Biochem J. 1999 Apr 15;339(Pt 2):233–239. [PMC free article] [PubMed] [Google Scholar]
- Matsumoto K., Takao Y., Akazawa S., Yano M., Uotani S., Kawasaki E., Takino H., Yamasaki H., Okuno S., Yamaguchi Y. Developmental change of facilitative glucose transporter expression in rat embryonal and fetal intestine. Biochem Biophys Res Commun. 1993 Jun 30;193(3):1275–1282. doi: 10.1006/bbrc.1993.1763. [DOI] [PubMed] [Google Scholar]
- Miyamoto K., Hase K., Takagi T., Fujii T., Taketani Y., Minami H., Oka T., Nakabou Y. Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars. Biochem J. 1993 Oct 1;295(Pt 1):211–215. doi: 10.1042/bj2950211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monteiro I. M., Ferraris R. P. Precocious enhancement of intestinal fructose uptake by diet in adrenalectomized rat pups. Pediatr Res. 1997 Mar;41(3):353–358. doi: 10.1203/00006450-199703000-00008. [DOI] [PubMed] [Google Scholar]
- Monteiro I. M., Jiang L., Ferraris R. P. Dietary modulation of intestinal fructose transport and GLUT5 mRNA expression in hypothyroid rat pups. J Pediatr Gastroenterol Nutr. 1999 Nov;29(5):563–570. doi: 10.1097/00005176-199911000-00017. [DOI] [PubMed] [Google Scholar]
- Moreno M., Otero M., Tur J. A., Planas J. M., Esteban S. Kinetic constants of alpha-methyl-D-glucoside transport in the chick small intestine during perinatal development. Mech Ageing Dev. 1996 Nov 29;92(1):11–20. doi: 10.1016/s0047-6374(96)01798-8. [DOI] [PubMed] [Google Scholar]
- Nobigrot T., Chasalow F. I., Lifshitz F. Carbohydrate absorption from one serving of fruit juice in young children: age and carbohydrate composition effects. J Am Coll Nutr. 1997 Apr;16(2):152–158. doi: 10.1080/07315724.1997.10718666. [DOI] [PubMed] [Google Scholar]
- Pajor A. M., Hirayama B. A., Wright E. M. Molecular biology approaches to comparative study of Na(+)-glucose cotransport. Am J Physiol. 1992 Sep;263(3 Pt 2):R489–R495. doi: 10.1152/ajpregu.1992.263.3.R489. [DOI] [PubMed] [Google Scholar]
- Pappenheimer J. R. Paracellular intestinal absorption of glucose, creatinine, and mannitol in normal animals: relation to body size. Am J Physiol. 1990 Aug;259(2 Pt 1):G290–G299. doi: 10.1152/ajpgi.1990.259.2.G290. [DOI] [PubMed] [Google Scholar]
- Park Y. K., Yetley E. A. Intakes and food sources of fructose in the United States. Am J Clin Nutr. 1993 Nov;58(5 Suppl):737S–747S. doi: 10.1093/ajcn/58.5.737S. [DOI] [PubMed] [Google Scholar]
- Phillips J. D., Diamond J. M., Fonkalsrud E. W. Fetal rabbit intestinal absorption: implications for transamniotic fetal feeding. J Pediatr Surg. 1990 Aug;25(8):909–913. doi: 10.1016/0022-3468(90)90202-k. [DOI] [PubMed] [Google Scholar]
- Rand E. B., Depaoli A. M., Davidson N. O., Bell G. I., Burant C. F. Sequence, tissue distribution, and functional characterization of the rat fructose transporter GLUT5. Am J Physiol. 1993 Jun;264(6 Pt 1):G1169–G1176. doi: 10.1152/ajpgi.1993.264.6.G1169. [DOI] [PubMed] [Google Scholar]
- Reimer R. A., Field C. J., McBurney M. I. Ontogenic changes in proglucagon mRNA in BB diabetes prone and normal rats weaned onto a chow diet. Diabetologia. 1997 Aug;40(8):871–878. doi: 10.1007/s001250050762. [DOI] [PubMed] [Google Scholar]
- Rhoads D. B., Rosenbaum D. H., Unsal H., Isselbacher K. J., Levitsky L. L. Circadian periodicity of intestinal Na+/glucose cotransporter 1 mRNA levels is transcriptionally regulated. J Biol Chem. 1998 Apr 17;273(16):9510–9516. doi: 10.1074/jbc.273.16.9510. [DOI] [PubMed] [Google Scholar]
- Secor S. M., Stein E. D., Diamond J. Rapid upregulation of snake intestine in response to feeding: a new model of intestinal adaptation. Am J Physiol. 1994 Apr;266(4 Pt 1):G695–G705. doi: 10.1152/ajpgi.1994.266.4.G695. [DOI] [PubMed] [Google Scholar]
- Sharp P. A., Debnam E. S., Srai S. K. Rapid enhancement of brush border glucose uptake after exposure of rat jejunal mucosa to glucose. Gut. 1996 Oct;39(4):545–550. doi: 10.1136/gut.39.4.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shirazi-Beechey S. P., Gribble S. M., Wood I. S., Tarpey P. S., Beechey R. B., Dyer J., Scott D., Barker P. J. Dietary regulation of the intestinal sodium-dependent glucose cotransporter (SGLT1). Biochem Soc Trans. 1994 Aug;22(3):655–658. doi: 10.1042/bst0220655. [DOI] [PubMed] [Google Scholar]
- Shirazi-Beechey S. P., Hirayama B. A., Wang Y., Scott D., Smith M. W., Wright E. M. Ontogenic development of lamb intestinal sodium-glucose co-transporter is regulated by diet. J Physiol. 1991 Jun;437:699–708. doi: 10.1113/jphysiol.1991.sp018620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shirazi-Beechey S. P. Intestinal sodium-dependent D-glucose co-transporter: dietary regulation. Proc Nutr Soc. 1996 Mar;55(1B):167–178. doi: 10.1079/pns19960018. [DOI] [PubMed] [Google Scholar]
- Shu R., David E. S., Ferraris R. P. Dietary fructose enhances intestinal fructose transport and GLUT5 expression in weaning rats. Am J Physiol. 1997 Mar;272(3 Pt 1):G446–G453. doi: 10.1152/ajpgi.1997.272.3.G446. [DOI] [PubMed] [Google Scholar]
- Shu R., David E. S., Ferraris R. P. Luminal fructose modulates fructose transport and GLUT-5 expression in small intestine of weaning rats. Am J Physiol. 1998 Feb;274(2 Pt 1):G232–G239. doi: 10.1152/ajpgi.1998.274.2.G232. [DOI] [PubMed] [Google Scholar]
- Smith M. W., Turvey A., Freeman T. C. Appearance of phloridzin-sensitive glucose transport is not controlled at mRNA level in rabbit jejunal enterocytes. Exp Physiol. 1992 May;77(3):525–528. doi: 10.1113/expphysiol.1992.sp003616. [DOI] [PubMed] [Google Scholar]
- Solberg D. H., Diamond J. M. Comparison of different dietary sugars as inducers of intestinal sugar transporters. Am J Physiol. 1987 Apr;252(4 Pt 1):G574–G584. doi: 10.1152/ajpgi.1987.252.4.G574. [DOI] [PubMed] [Google Scholar]
- Stevenson N. R., Sitren H. S., Furuya S. Circadian rhythmicity in several small intestinal functions is independent of use of the intestine. Am J Physiol. 1980 Mar;238(3):G203–G207. doi: 10.1152/ajpgi.1980.238.3.G203. [DOI] [PubMed] [Google Scholar]
- Tanii H., Horie T. Enhancement of glucose transport in small intestinal brush border membrane of retinol administered rat. Life Sci. 1999;64(15):1259–1264. doi: 10.1016/s0024-3205(99)00060-0. [DOI] [PubMed] [Google Scholar]
- Tavakkolizadeh A., Berger U. V., Shen K. R., Levitsky L. L., Zinner M. J., Hediger M. A., Ashley S. W., Whang E. E., Rhoads D. B. Diurnal rhythmicity in intestinal SGLT-1 function, V(max), and mRNA expression topography. Am J Physiol Gastrointest Liver Physiol. 2001 Feb;280(2):G209–G215. doi: 10.1152/ajpgi.2001.280.2.G209. [DOI] [PubMed] [Google Scholar]
- Thorens B., Sarkar H. K., Kaback H. R., Lodish H. F. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell. 1988 Oct 21;55(2):281–290. doi: 10.1016/0092-8674(88)90051-7. [DOI] [PubMed] [Google Scholar]
- Toloza E. M., Diamond J. M. Ontogenetic development of transporter regulation in bullfrog intestine. Am J Physiol. 1990 May;258(5 Pt 1):G770–G773. doi: 10.1152/ajpgi.1990.258.5.G770. [DOI] [PubMed] [Google Scholar]
- Toloza E. M., Diamond J. Ontogenetic development of nutrient transporters in rat intestine. Am J Physiol. 1992 Nov;263(5 Pt 1):G593–G604. doi: 10.1152/ajpgi.1992.263.5.G593. [DOI] [PubMed] [Google Scholar]
- Vaulont S., Puzenat N., Levrat F., Cognet M., Kahn A., Raymondjean M. Proteins binding to the liver-specific pyruvate kinase gene promoter. A unique combination of known factors. J Mol Biol. 1989 Sep 20;209(2):205–219. doi: 10.1016/0022-2836(89)90273-8. [DOI] [PubMed] [Google Scholar]
- Vázquez C. M., Rovira N., Ruiz-Gutiérrez V., Planas J. M. Developmental changes in glucose transport, lipid composition, and fluidity of jejunal BBM. Am J Physiol. 1997 Sep;273(3 Pt 2):R1086–R1093. doi: 10.1152/ajpregu.1997.273.3.R1086. [DOI] [PubMed] [Google Scholar]
- Wang Y., Harvey C., Rousset M., Swallow D. M. Expression of human intestinal mRNA transcripts during development: analysis by a semiquantitative RNA polymerase chain reaction method. Pediatr Res. 1994 Oct;36(4):514–521. doi: 10.1203/00006450-199410000-00018. [DOI] [PubMed] [Google Scholar]
- Wasserman D., Hoekstra J. H., Tolia V., Taylor C. J., Kirschner B. S., Takeda J., Bell G. I., Taub R., Rand E. B. Molecular analysis of the fructose transporter gene (GLUT5) in isolated fructose malabsorption. J Clin Invest. 1996 Nov 15;98(10):2398–2402. doi: 10.1172/JCI119053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss S. L., Lee E. A., Diamond J. Evolutionary matches of enzyme and transporter capacities to dietary substrate loads in the intestinal brush border. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2117–2121. doi: 10.1073/pnas.95.5.2117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright E. M., Hager K. M., Turk E. Sodium cotransport proteins. Curr Opin Cell Biol. 1992 Aug;4(4):696–702. doi: 10.1016/0955-0674(92)90091-p. [DOI] [PubMed] [Google Scholar]
- Wright E. M., Hirsch J. R., Loo D. D., Zampighi G. A. Regulation of Na+/glucose cotransporters. J Exp Biol. 1997 Jan;200(Pt 2):287–293. doi: 10.1242/jeb.200.2.287. [DOI] [PubMed] [Google Scholar]
- Wright E. M. I. Glucose galactose malabsorption. Am J Physiol. 1998 Nov;275(5 Pt 1):G879–G882. doi: 10.1152/ajpgi.1998.275.5.G879. [DOI] [PubMed] [Google Scholar]
- Wright E. M., Loo D. D., Panayotova-Heiermann M., Hirayama B. A., Turk E., Eskandari S., Lam J. T. Structure and function of the Na+/glucose cotransporter. Acta Physiol Scand Suppl. 1998 Aug;643:257–264. [PubMed] [Google Scholar]
- Yeh K. Y. Cell kinetics in the small intestine of suckling rats. I. Influence of hypophysectomy. Anat Rec. 1977 May;188(1):69–76. doi: 10.1002/ar.1091880108. [DOI] [PubMed] [Google Scholar]
- Yoshida A., Takata K., Kasahara T., Aoyagi T., Saito S., Hirano H. Immunohistochemical localization of Na(+)-dependent glucose transporter in the rat digestive tract. Histochem J. 1995 May;27(5):420–426. [PubMed] [Google Scholar]
- Zhao F. Q., Okine E. K., Cheeseman C. I., Shirazi-Beechey S. P., Kennelly J. J. Glucose transporter gene expression in lactating bovine gastrointestinal tract. J Anim Sci. 1998 Nov;76(11):2921–2929. doi: 10.2527/1998.76112921x. [DOI] [PubMed] [Google Scholar]