Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Dec 1;360(Pt 2):277–283. doi: 10.1042/0264-6021:3600277

TPIP: a novel phosphoinositide 3-phosphatase.

S M Walker 1, C P Downes 1, N R Leslie 1
PMCID: PMC1222227  PMID: 11716755

Abstract

The PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumour suppressor is a phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] 3-phosphatase that plays a critical role in regulating many cellular processes by antagonizing the phosphoinositide 3-kinase signalling pathway. We have identified and characterized two human homologues of PTEN, which differ with respect to their subcellular localization and lipid phosphatase activities. The previously cloned, but uncharacterized, TPTE (transmembrane phosphatase with tensin homology) is localized to the plasma membrane, but lacks detectable phosphoinositide 3-phosphatase activity. TPIP (TPTE and PTEN homologous inositol lipid phosphatase) is a novel phosphatase that occurs in several differentially spliced forms of which two, TPIP alpha and TPIP beta, appear to be functionally distinct. TPIP alpha displays similar phosphoinositide 3-phosphatase activity compared with PTEN against PtdIns(3,4,5)P(3), PtdIns(3,5)P(2), PtdIns(3,4)P(2) and PtdIns(3)P, has N-terminal transmembrane domains and appears to be localized on the endoplasmic reticulum. This is unusual as most signalling-lipid-metabolizing enzymes are not integral membrane proteins. TPIP beta, however, lacks detectable phosphatase activity and is cytosolic. TPIP has a wider tissue distribution than the testis-specific TPTE, with specific splice variants being expressed in testis, brain and stomach. TPTE and TPIP do not appear to be functional orthologues of the Golgi-localized and more distantly related murine PTEN2. We suggest that TPIP alpha plays a role in regulating phosphoinositide signalling on the endoplasmic reticulum, and might also represent a tumour suppressor and functional homologue of PTEN in some tissues.

Full Text

The Full Text of this article is available as a PDF (278.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caffrey J. J., Darden T., Wenk M. R., Shears S. B. Expanding coincident signaling by PTEN through its inositol 1,3,4,5,6-pentakisphosphate 3-phosphatase activity. FEBS Lett. 2001 Jun 15;499(1-2):6–10. doi: 10.1016/s0014-5793(01)02500-5. [DOI] [PubMed] [Google Scholar]
  2. Chen H., Rossier C., Morris M. A., Scott H. S., Gos A., Bairoch A., Antonarakis S. E. A testis-specific gene, TPTE, encodes a putative transmembrane tyrosine phosphatase and maps to the pericentromeric region of human chromosomes 21 and 13, and to chromosomes 15, 22, and Y. Hum Genet. 1999 Nov;105(5):399–409. doi: 10.1007/s004390051122. [DOI] [PubMed] [Google Scholar]
  3. Dahia P. L. PTEN, a unique tumor suppressor gene. Endocr Relat Cancer. 2000 Jun;7(2):115–129. doi: 10.1677/erc.0.0070115. [DOI] [PubMed] [Google Scholar]
  4. Furnari F. B., Huang H. J., Cavenee W. K. The phosphoinositol phosphatase activity of PTEN mediates a serum-sensitive G1 growth arrest in glioma cells. Cancer Res. 1998 Nov 15;58(22):5002–5008. [PubMed] [Google Scholar]
  5. Georgescu M. M., Kirsch K. H., Akagi T., Shishido T., Hanafusa H. The tumor-suppressor activity of PTEN is regulated by its carboxyl-terminal region. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10182–10187. doi: 10.1073/pnas.96.18.10182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Georgescu M. M., Kirsch K. H., Kaloudis P., Yang H., Pavletich N. P., Hanafusa H. Stabilization and productive positioning roles of the C2 domain of PTEN tumor suppressor. Cancer Res. 2000 Dec 15;60(24):7033–7038. [PubMed] [Google Scholar]
  7. Guipponi M., Yaspo M. L., Riesselman L., Chen H., De Sario A., Roizès G., Antonarakis S. E. Genomic structure of a copy of the human TPTE gene which encompasses 87 kb on the short arm of chromosome 21. Hum Genet. 2000 Aug;107(2):127–131. doi: 10.1007/s004390000343. [DOI] [PubMed] [Google Scholar]
  8. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001 Jan 19;305(3):567–580. doi: 10.1006/jmbi.2000.4315. [DOI] [PubMed] [Google Scholar]
  9. Lee J. O., Yang H., Georgescu M. M., Di Cristofano A., Maehama T., Shi Y., Dixon J. E., Pandolfi P., Pavletich N. P. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell. 1999 Oct 29;99(3):323–334. doi: 10.1016/s0092-8674(00)81663-3. [DOI] [PubMed] [Google Scholar]
  10. Leslie N. R., Bennett D., Gray A., Pass I., Hoang-Xuan K., Downes C. P. Targeting mutants of PTEN reveal distinct subsets of tumour suppressor functions. Biochem J. 2001 Jul 15;357(Pt 2):427–435. doi: 10.1042/0264-6021:3570427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leslie N. R., Biondi R. M., Alessi D. R. Phosphoinositide-regulated kinases and phosphoinositide phosphatases. Chem Rev. 2001 Aug;101(8):2365–2380. doi: 10.1021/cr000091i. [DOI] [PubMed] [Google Scholar]
  12. Leslie N. R., Gray A., Pass I., Orchiston E. A., Downes C. P. Analysis of the cellular functions of PTEN using catalytic domain and C-terminal mutations: differential effects of C-terminal deletion on signalling pathways downstream of phosphoinositide 3-kinase. Biochem J. 2000 Mar 15;346(Pt 3):827–833. [PMC free article] [PubMed] [Google Scholar]
  13. Liliental J., Moon S. Y., Lesche R., Mamillapalli R., Li D., Zheng Y., Sun H., Wu H. Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases. Curr Biol. 2000 Apr 6;10(7):401–404. doi: 10.1016/s0960-9822(00)00417-6. [DOI] [PubMed] [Google Scholar]
  14. Maehama T., Dixon J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998 May 29;273(22):13375–13378. doi: 10.1074/jbc.273.22.13375. [DOI] [PubMed] [Google Scholar]
  15. Maehama T., Taylor G. S., Dixon J. E. PTEN and myotubularin: novel phosphoinositide phosphatases. Annu Rev Biochem. 2001;70:247–279. doi: 10.1146/annurev.biochem.70.1.247. [DOI] [PubMed] [Google Scholar]
  16. Myers M. P., Pass I., Batty I. H., Van der Kaay J., Stolarov J. P., Hemmings B. A., Wigler M. H., Downes C. P., Tonks N. K. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13513–13518. doi: 10.1073/pnas.95.23.13513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Myers M. P., Stolarov J. P., Eng C., Li J., Wang S. I., Wigler M. H., Parsons R., Tonks N. K. P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9052–9057. doi: 10.1073/pnas.94.17.9052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shan X., Czar M. J., Bunnell S. C., Liu P., Liu Y., Schwartzberg P. L., Wange R. L. Deficiency of PTEN in Jurkat T cells causes constitutive localization of Itk to the plasma membrane and hyperresponsiveness to CD3 stimulation. Mol Cell Biol. 2000 Sep;20(18):6945–6957. doi: 10.1128/mcb.20.18.6945-6957.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Simpson L., Parsons R. PTEN: life as a tumor suppressor. Exp Cell Res. 2001 Mar 10;264(1):29–41. doi: 10.1006/excr.2000.5130. [DOI] [PubMed] [Google Scholar]
  20. Tolkacheva T., Chan A. M. Inhibition of H-Ras transformation by the PTEN/MMAC1/TEP1 tumor suppressor gene. Oncogene. 2000 Feb 3;19(5):680–689. doi: 10.1038/sj.onc.1203331. [DOI] [PubMed] [Google Scholar]
  21. Vanhaesebroeck B., Leevers S. J., Ahmadi K., Timms J., Katso R., Driscoll P. C., Woscholski R., Parker P. J., Waterfield M. D. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem. 2001;70:535–602. doi: 10.1146/annurev.biochem.70.1.535. [DOI] [PubMed] [Google Scholar]
  22. Vazquez F., Ramaswamy S., Nakamura N., Sellers W. R. Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol. 2000 Jul;20(14):5010–5018. doi: 10.1128/mcb.20.14.5010-5018.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wishart M. J., Dixon J. E. Gathering STYX: phosphatase-like form predicts functions for unique protein-interaction domains. Trends Biochem Sci. 1998 Aug;23(8):301–306. doi: 10.1016/s0968-0004(98)01241-9. [DOI] [PubMed] [Google Scholar]
  24. Wu Y., Dowbenko D., Pisabarro M. T., Dillard-Telm L., Koeppen H., Lasky L. A. PTEN 2, a Golgi-associated testis-specific homologue of the PTEN tumor suppressor lipid phosphatase. J Biol Chem. 2001 Mar 2;276(24):21745–21753. doi: 10.1074/jbc.M101480200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES