Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Dec 1;360(Pt 2):305–312. doi: 10.1042/0264-6021:3600305

Structural and functional characterization of the mouse fatty acid translocase promoter: activation during adipose differentiation.

L Teboul 1, M Febbraio 1, D Gaillard 1, E Z Amri 1, R Silverstein 1, P A Grimaldi 1
PMCID: PMC1222230  PMID: 11716758

Abstract

Fatty acid translocase (FAT/CD36) is a cell-surface glycoprotein that functions as a receptor/transporter for long-chain fatty acids (LCFAs), and interacts with other protein and lipid ligands. FAT/CD36 is expressed by various cell types, including platelets, monocytes/macrophages and endothelial cells, and tissues with an active LCFA metabolism, such as adipose, small intestine and heart. FAT/CD36 expression is induced during adipose cell differentiation and is transcriptionally up-regulated by LCFAs and thiazolidinediones in pre-adipocytes via a peroxisome-proliferator-activated receptor (PPAR)-mediated process. We isolated and analysed the murine FAT/CD36 promoter employing C(2)C(12)N cells directed to differentiate to either adipose or muscle. Transient transfection studies revealed that the 309 bp upstream from the start of exon 1 confer adipose specific activity. Sequence analysis of this DNA fragment revealed the presence of two imperfect direct repeat-1 elements. Electrophoretic mobility-shift assay demonstrated that these elements were peroxisome-proliferator-responsive elements (PPREs). Mutagenesis and transfection experiments indicated that both PPREs co-operate to drive strong promoter activity in adipose cells. We conclude that murine FAT/CD36 expression in adipose tissue is dependent upon transcriptional activation via PPARs through binding to two PPREs located at -245 to -233 bp and -120 to -108 bp from the transcription start site.

Full Text

The Full Text of this article is available as a PDF (231.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abumrad N. A., Forest C. C., Regen D. M., Sanders S. Increase in membrane uptake of long-chain fatty acids early during preadipocyte differentiation. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6008–6012. doi: 10.1073/pnas.88.14.6008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abumrad N. A., el-Maghrabi M. R., Amri E. Z., Lopez E., Grimaldi P. A. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem. 1993 Aug 25;268(24):17665–17668. [PubMed] [Google Scholar]
  3. Amri E. Z., Bonino F., Ailhaud G., Abumrad N. A., Grimaldi P. A. Cloning of a protein that mediates transcriptional effects of fatty acids in preadipocytes. Homology to peroxisome proliferator-activated receptors. J Biol Chem. 1995 Feb 3;270(5):2367–2371. doi: 10.1074/jbc.270.5.2367. [DOI] [PubMed] [Google Scholar]
  4. Armesilla A. L., Calvo D., Vega M. A. Structural and functional characterization of the human CD36 gene promoter: identification of a proximal PEBP2/CBF site. J Biol Chem. 1996 Mar 29;271(13):7781–7787. doi: 10.1074/jbc.271.13.7781. [DOI] [PubMed] [Google Scholar]
  5. Armesilla A. L., Vega M. A. Structural organization of the gene for human CD36 glycoprotein. J Biol Chem. 1994 Jul 22;269(29):18985–18991. [PubMed] [Google Scholar]
  6. Bastie C., Holst D., Gaillard D., Jehl-Pietri C., Grimaldi P. A. Expression of peroxisome proliferator-activated receptor PPARdelta promotes induction of PPARgamma and adipocyte differentiation in 3T3C2 fibroblasts. J Biol Chem. 1999 Jul 30;274(31):21920–21925. doi: 10.1074/jbc.274.31.21920. [DOI] [PubMed] [Google Scholar]
  7. Bastie C., Luquet S., Holst D., Jehl-Pietri C., Grimaldi P. A. Alterations of peroxisome proliferator-activated receptor delta activity affect fatty acid-controlled adipose differentiation. J Biol Chem. 2000 Dec 8;275(49):38768–38773. doi: 10.1074/jbc.M006450200. [DOI] [PubMed] [Google Scholar]
  8. Endemann G., Stanton L. W., Madden K. S., Bryant C. M., White R. T., Protter A. A. CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem. 1993 Jun 5;268(16):11811–11816. [PubMed] [Google Scholar]
  9. Febbraio M., Abumrad N. A., Hajjar D. P., Sharma K., Cheng W., Pearce S. F., Silverstein R. L. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J Biol Chem. 1999 Jul 2;274(27):19055–19062. doi: 10.1074/jbc.274.27.19055. [DOI] [PubMed] [Google Scholar]
  10. Frohnert B. I., Hui T. Y., Bernlohr D. A. Identification of a functional peroxisome proliferator-responsive element in the murine fatty acid transport protein gene. J Biol Chem. 1999 Feb 12;274(7):3970–3977. doi: 10.1074/jbc.274.7.3970. [DOI] [PubMed] [Google Scholar]
  11. Glatz J. F., van der Vusse G. J. Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res. 1996 Sep;35(3):243–282. doi: 10.1016/s0163-7827(96)00006-9. [DOI] [PubMed] [Google Scholar]
  12. Graves R. A., Tontonoz P., Spiegelman B. M. Analysis of a tissue-specific enhancer: ARF6 regulates adipogenic gene expression. Mol Cell Biol. 1992 Mar;12(3):1202–1208. doi: 10.1128/mcb.12.3.1202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Greenwalt D. E., Lipsky R. H., Ockenhouse C. F., Ikeda H., Tandon N. N., Jamieson G. A. Membrane glycoprotein CD36: a review of its roles in adherence, signal transduction, and transfusion medicine. Blood. 1992 Sep 1;80(5):1105–1115. [PubMed] [Google Scholar]
  14. Greenwalt D. E., Scheck S. H., Rhinehart-Jones T. Heart CD36 expression is increased in murine models of diabetes and in mice fed a high fat diet. J Clin Invest. 1995 Sep;96(3):1382–1388. doi: 10.1172/JCI118173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grimaldi P. A., Teboul L., Inadera H., Gaillard D., Amri E. Z. Trans-differentiation of myoblasts to adipoblasts: triggering effects of fatty acids and thiazolidinediones. Prostaglandins Leukot Essent Fatty Acids. 1997 Jul;57(1):71–75. doi: 10.1016/s0952-3278(97)90495-6. [DOI] [PubMed] [Google Scholar]
  16. Helledie T., Antonius M., Sorensen R. V., Hertzel A. V., Bernlohr D. A., Kølvraa S., Kristiansen K., Mandrup S. Lipid-binding proteins modulate ligand-dependent trans-activation by peroxisome proliferator-activated receptors and localize to the nucleus as well as the cytoplasm. J Lipid Res. 2000 Nov;41(11):1740–1751. [PubMed] [Google Scholar]
  17. Huang J. T., Welch J. S., Ricote M., Binder C. J., Willson T. M., Kelly C., Witztum J. L., Funk C. D., Conrad D., Glass C. K. Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature. 1999 Jul 22;400(6742):378–382. doi: 10.1038/22572. [DOI] [PubMed] [Google Scholar]
  18. Ibrahimi A., Bonen A., Blinn W. D., Hajri T., Li X., Zhong K., Cameron R., Abumrad N. A. Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J Biol Chem. 1999 Sep 17;274(38):26761–26766. doi: 10.1074/jbc.274.38.26761. [DOI] [PubMed] [Google Scholar]
  19. Ibrahimi A., Sfeir Z., Magharaie H., Amri E. Z., Grimaldi P., Abumrad N. A. Expression of the CD36 homolog (FAT) in fibroblast cells: effects on fatty acid transport. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2646–2651. doi: 10.1073/pnas.93.7.2646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Issemann I., Prince R., Tugwood J., Green S. A role for fatty acids and liver fatty acid binding protein in peroxisome proliferation? Biochem Soc Trans. 1992 Nov;20(4):824–827. doi: 10.1042/bst0200824. [DOI] [PubMed] [Google Scholar]
  21. Knowles D. M., 2nd, Tolidjian B., Marboe C., D'Agati V., Grimes M., Chess L. Monoclonal anti-human monocyte antibodies OKM1 and OKM5 possess distinctive tissue distributions including differential reactivity with vascular endothelium. J Immunol. 1984 May;132(5):2170–2173. [PubMed] [Google Scholar]
  22. König H., Pfisterer P., Corcoran L. M., Wirth T. Identification of CD36 as the first gene dependent on the B-cell differentiation factor Oct-2. Genes Dev. 1995 Jul 1;9(13):1598–1607. doi: 10.1101/gad.9.13.1598. [DOI] [PubMed] [Google Scholar]
  23. Lawrence J. W., Kroll D. J., Eacho P. I. Ligand-dependent interaction of hepatic fatty acid-binding protein with the nucleus. J Lipid Res. 2000 Sep;41(9):1390–1401. [PubMed] [Google Scholar]
  24. Lowell B. B. PPARgamma: an essential regulator of adipogenesis and modulator of fat cell function. Cell. 1999 Oct 29;99(3):239–242. doi: 10.1016/s0092-8674(00)81654-2. [DOI] [PubMed] [Google Scholar]
  25. Nagy L., Tontonoz P., Alvarez J. G., Chen H., Evans R. M. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell. 1998 Apr 17;93(2):229–240. doi: 10.1016/s0092-8674(00)81574-3. [DOI] [PubMed] [Google Scholar]
  26. Osumi T., Wen J. K., Hashimoto T. Two cis-acting regulatory sequences in the peroxisome proliferator-responsive enhancer region of rat acyl-CoA oxidase gene. Biochem Biophys Res Commun. 1991 Mar 29;175(3):866–871. doi: 10.1016/0006-291x(91)91645-s. [DOI] [PubMed] [Google Scholar]
  27. Pelsers M. M., Lutgerink J. T., Nieuwenhoven F. A., Tandon N. N., van der Vusse G. J., Arends J. W., Hoogenboom H. R., Glatz J. F. A sensitive immunoassay for rat fatty acid translocase (CD36) using phage antibodies selected on cell transfectants: abundant presence of fatty acid translocase/CD36 in cardiac and red skeletal muscle and up-regulation in diabetes. Biochem J. 1999 Feb 1;337(Pt 3):407–414. [PMC free article] [PubMed] [Google Scholar]
  28. Platt N., Suzuki H., Kurihara Y., Kodama T., Gordon S. Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12456–12460. doi: 10.1073/pnas.93.22.12456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Poirier H., Degrace P., Niot I., Bernard A., Besnard P. Localization and regulation of the putative membrane fatty-acid transporter (FAT) in the small intestine. Comparison with fatty acid-binding proteins (FABP). Eur J Biochem. 1996 Jun 1;238(2):368–373. doi: 10.1111/j.1432-1033.1996.0368z.x. [DOI] [PubMed] [Google Scholar]
  30. Schoonjans K., Peinado-Onsurbe J., Lefebvre A. M., Heyman R. A., Briggs M., Deeb S., Staels B., Auwerx J. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 1996 Oct 1;15(19):5336–5348. [PMC free article] [PubMed] [Google Scholar]
  31. Schoonjans K., Watanabe M., Suzuki H., Mahfoudi A., Krey G., Wahli W., Grimaldi P., Staels B., Yamamoto T., Auwerx J. Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter. J Biol Chem. 1995 Aug 18;270(33):19269–19276. doi: 10.1074/jbc.270.33.19269. [DOI] [PubMed] [Google Scholar]
  32. Teboul L., Gaillard D., Staccini L., Inadera H., Amri E. Z., Grimaldi P. A. Thiazolidinediones and fatty acids convert myogenic cells into adipose-like cells. J Biol Chem. 1995 Nov 24;270(47):28183–28187. doi: 10.1074/jbc.270.47.28183. [DOI] [PubMed] [Google Scholar]
  33. Tontonoz P., Hu E., Spiegelman B. M. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell. 1994 Dec 30;79(7):1147–1156. doi: 10.1016/0092-8674(94)90006-x. [DOI] [PubMed] [Google Scholar]
  34. Tontonoz P., Nagy L., Alvarez J. G., Thomazy V. A., Evans R. M. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell. 1998 Apr 17;93(2):241–252. doi: 10.1016/s0092-8674(00)81575-5. [DOI] [PubMed] [Google Scholar]
  35. Van Nieuwenhoven F. A., Van der Vusse G. J., Glatz J. F. Membrane-associated and cytoplasmic fatty acid-binding proteins. Lipids. 1996 Mar;31 (Suppl):S223–S227. doi: 10.1007/BF02637080. [DOI] [PubMed] [Google Scholar]
  36. Viville S. Double-stranded DNA site-directed mutagenesis. Methods Mol Biol. 1996;57:87–95. doi: 10.1385/0-89603-332-5:87. [DOI] [PubMed] [Google Scholar]
  37. Wolfrum C., Borrmann C. M., Borchers T., Spener F. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha - and gamma-mediated gene expression via liver fatty acid binding protein: a signaling path to the nucleus. Proc Natl Acad Sci U S A. 2001 Feb 20;98(5):2323–2328. doi: 10.1073/pnas.051619898. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES