Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Dec 1;360(Pt 2):313–320. doi: 10.1042/0264-6021:3600313

myo-Inositol oxygenase: molecular cloning and expression of a unique enzyme that oxidizes myo-inositol and D-chiro-inositol.

R J Arner 1, K S Prabhu 1, J T Thompson 1, G R Hildenbrandt 1, A D Liken 1, C C Reddy 1
PMCID: PMC1222231  PMID: 11716759

Abstract

myo-Inositol oxygenase (MIOX) catalyses the first committed step in the only pathway of myo-inositol catabolism, which occurs predominantly in the kidney. The enzyme is a non-haem-iron enzyme that catalyses the ring cleavage of myo-inositol with the incorporation of a single atom of oxygen. A full-length cDNA was isolated from a pig kidney library with an open reading frame of 849 bp and a corresponding protein subunit molecular mass of 32.7 kDa. The cDNA was expressed in a bacterial pET expression system and an active recombinant MIOX was purified from bacterial lysates to electrophoretic homogeneity. The purified enzyme displayed the same catalytic properties as the native enzyme with K(m) and k(cat) values of 5.9 mM and 11 min(-1) respectively. The pI was estimated to be 4.5. Preincubation with 1 mM Fe(2+) and 2 mM cysteine was essential for the enzyme's activity. D-chiro-Inositol, a myo-inositol isomer, is a substrate for the recombinant MIOX with an estimated K(m) of 33.5 mM. Both myo-inositol and D-chiro-inositol have been implicated in the pathogenesis of diabetes. Thus an understanding of the regulation of MIOX expression clearly represents a potential window on the aetiology of diabetes as well as on the control of various intracellular phosphoinositides and key signalling pathways.

Full Text

The Full Text of this article is available as a PDF (208.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benfield P. Aldose reductase inhibitors and late complications of diabetes. Drugs. 1986;32 (Suppl 2):43–55. doi: 10.2165/00003495-198600322-00010. [DOI] [PubMed] [Google Scholar]
  2. Bry K., Hallman M. Perinatal development of inositol synthesis and catabolism in rabbit kidney. Biol Neonate. 1991;60(3-4):249–257. doi: 10.1159/000243416. [DOI] [PubMed] [Google Scholar]
  3. CHARALAMPOUS F. C. Biochemical studies on inositol. V. Purification and properties of the enzyme that cleaves inositol to D-glucuronic acid. J Biol Chem. 1959 Feb;234(2):220–227. [PubMed] [Google Scholar]
  4. CHARALAMPOUS F. C. Biochemical studies on inositol. VI. Mechanism of cleavage of inositol to D-glucuronic acid. J Biol Chem. 1960 May;235:1286–1291. [PubMed] [Google Scholar]
  5. CHARALAMPOUS F. C., LYRAS C. Biochemical studies on inositol. IV. Conversion of inositol to glucuronic acid by rat kidney extracts. J Biol Chem. 1957 Sep;228(1):1–13. [PubMed] [Google Scholar]
  6. Cohen A. M., Wald H., Popovtzer M., Rosenmann E. Effect of myo-inositol supplementation on the development of renal pathological changes in the Cohen diabetic (type 2) rat. Diabetologia. 1995 Aug;38(8):899–905. doi: 10.1007/BF00400577. [DOI] [PubMed] [Google Scholar]
  7. Cohen M. P. Aldose reductase, glomerular metabolism, and diabetic nephropathy. Metabolism. 1986 Apr;35(4 Suppl 1):55–59. doi: 10.1016/0026-0495(86)90188-5. [DOI] [PubMed] [Google Scholar]
  8. De Jongh K. S., Schofield P. J., Edwards M. R. Kinetic mechanism of sheep liver NADPH-dependent aldehyde reductase. Biochem J. 1987 Feb 15;242(1):143–150. doi: 10.1042/bj2420143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dyck P. J., Minnerath S. R., O'Brien P. C. Nerve glucose, sorbitol, fructose, and myo-inositol at various time after feeding in streptozotocin-induced diabetes in rats. Mayo Clin Proc. 1989 Aug;64(8):905–910. doi: 10.1016/s0025-6196(12)61217-8. [DOI] [PubMed] [Google Scholar]
  10. Fonteles M. C., Almeida M. Q., Larner J. Antihyperglycemic effects of 3-O-methyl-D-chiro-inositol and D-chiro-inositol associated with manganese in streptozotocin diabetic rats. Horm Metab Res. 2000 Apr;32(4):129–132. doi: 10.1055/s-2007-978606. [DOI] [PubMed] [Google Scholar]
  11. Fonteles M. C., Huang L. C., Larner J. Infusion of pH 2.0 D-chiro-inositol glycan insulin putative mediator normalizes plasma glucose in streptozotocin diabetic rats at a dose equivalent to insulin without inducing hypoglycaemia. Diabetologia. 1996 Jun;39(6):731–734. doi: 10.1007/BF00418546. [DOI] [PubMed] [Google Scholar]
  12. Goode D., Lewis M. E., Crabbe M. J. Accumulation of xylitol in the mammalian lens is related to glucuronate metabolism. FEBS Lett. 1996 Oct 21;395(2-3):174–178. doi: 10.1016/0014-5793(96)01012-5. [DOI] [PubMed] [Google Scholar]
  13. Goraya T. Y., Wilkins P., Douglas J. G., Zhou J., Berti-Mattera L. N. Signal transduction alterations in peripheral nerves from streptozotocin-induced diabetic rats. J Neurosci Res. 1995 Jul 1;41(4):518–525. doi: 10.1002/jnr.490410411. [DOI] [PubMed] [Google Scholar]
  14. Hankes L. V., Politzer W. M., Touster O., Anderson L. Myo-inositol catabolism in human pentosurics: the predominant role of the glucuronate-xylulose-pentose phosphate pathway. Ann N Y Acad Sci. 1969 Oct 17;165(2):564–576. [PubMed] [Google Scholar]
  15. Henry D. N., Del Monte M., Greene D. A., Killen P. D. Altered aldose reductase gene regulation in cultured human retinal pigment epithelial cells. J Clin Invest. 1993 Aug;92(2):617–623. doi: 10.1172/JCI116629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Holub B. J. Metabolism and function of myo-inositol and inositol phospholipids. Annu Rev Nutr. 1986;6:563–597. doi: 10.1146/annurev.nu.06.070186.003023. [DOI] [PubMed] [Google Scholar]
  17. Howard C. F., Jr, Anderson L. Metabolism of myo-inositol in animals. II. Complete catabolism of myo-inositol-14C by rat kidney slices. Arch Biochem Biophys. 1967 Feb;118(2):332–339. doi: 10.1016/0003-9861(67)90357-8. [DOI] [PubMed] [Google Scholar]
  18. Koller E., Koller F., Hoffmann-Ostenhof O. Myo-inositol oxygenase from oat seedlings. Mol Cell Biochem. 1976 Jan 31;10(1):33–39. doi: 10.1007/BF01731679. [DOI] [PubMed] [Google Scholar]
  19. Koller F., Hoffmann-Ostenhof O. myo-Inositol oxygenase from rat kidneys. I: Purification by affinity chromatography; physical and catalytic properties. Hoppe Seylers Z Physiol Chem. 1979 Apr;360(4):507–513. doi: 10.1515/bchm2.1979.360.1.507. [DOI] [PubMed] [Google Scholar]
  20. Koller F., Koller E. Affinity chromatography of myo-inositol oxygenase from rat kidney by means of an insoluble D-galacto-hexodialdose derivative. J Chromatogr. 1984 Jan 20;283:191–197. doi: 10.1016/s0021-9673(00)96254-x. [DOI] [PubMed] [Google Scholar]
  21. Koller F., Koller E. myo-inositol oxygenase from rat kidneys. Substrate-dependent oligomerization. Eur J Biochem. 1990 Oct 24;193(2):421–427. doi: 10.1111/j.1432-1033.1990.tb19355.x. [DOI] [PubMed] [Google Scholar]
  22. Larner J., Allan G., Kessler C., Reamer P., Gunn R., Huang L. C. Phosphoinositol glycan derived mediators and insulin resistance. Prospects for diagnosis and therapy. J Basic Clin Physiol Pharmacol. 1998;9(2-4):127–137. doi: 10.1515/jbcpp.1998.9.2-4.127. [DOI] [PubMed] [Google Scholar]
  23. Lin L. R., Reddy V. N., Giblin F. J., Kador P. F., Kinoshita J. H. Polyol accumulation in cultured human lens epithelial cells. Exp Eye Res. 1991 Jan;52(1):93–100. doi: 10.1016/0014-4835(91)90132-x. [DOI] [PubMed] [Google Scholar]
  24. Majerus P. W. Inositol phosphate biochemistry. Annu Rev Biochem. 1992;61:225–250. doi: 10.1146/annurev.bi.61.070192.001301. [DOI] [PubMed] [Google Scholar]
  25. Moskala R., Reddy C. C., Minard R. D., Hamilton G. A. An oxygen-18 tracer investigation of the mechanism of myo-inositol oxygenase. Biochem Biophys Res Commun. 1981 Mar 16;99(1):107–113. doi: 10.1016/0006-291x(81)91719-8. [DOI] [PubMed] [Google Scholar]
  26. Naber N. I., Hamilton G. A. Concerning the mechanism for transfer of D-glucuronate from myo-inositol oxygenase to D-glucuronate reductase. Biochim Biophys Acta. 1987 Feb 25;911(3):365–368. doi: 10.1016/0167-4838(87)90078-1. [DOI] [PubMed] [Google Scholar]
  27. Narayanan S. Aldose reductase and its inhibition in the control of diabetic complications. Ann Clin Lab Sci. 1993 Mar-Apr;23(2):148–158. [PubMed] [Google Scholar]
  28. Ostlund R. E., Jr, McGill J. B., Herskowitz I., Kipnis D. M., Santiago J. V., Sherman W. R. D-chiro-inositol metabolism in diabetes mellitus. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9988–9992. doi: 10.1073/pnas.90.21.9988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ostlund R. E., Jr, Seemayer R., Gupta S., Kimmel R., Ostlund E. L., Sherman W. R. A stereospecific myo-inositol/D-chiro-inositol transporter in HepG2 liver cells. Identification with D-chiro-[3-3H]inositol. J Biol Chem. 1996 Apr 26;271(17):10073–10078. doi: 10.1074/jbc.271.17.10073. [DOI] [PubMed] [Google Scholar]
  30. Palmano K. P., Whiting P. H., Hawthorne J. N. Free and lipid myo-inositol in tissues from rats with acute and less severe streptozotocin-induced diabetes. Biochem J. 1977 Oct 1;167(1):229–235. doi: 10.1042/bj1670229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Payrastre B., Missy K., Giuriato S., Bodin S., Plantavid M., Gratacap M. Phosphoinositides: key players in cell signalling, in time and space. Cell Signal. 2001 Jun;13(6):377–387. doi: 10.1016/s0898-6568(01)00158-9. [DOI] [PubMed] [Google Scholar]
  32. Pfeifer M. A., Schumer M. P. Clinical trials of diabetic neuropathy: past, present, and future. Diabetes. 1995 Dec;44(12):1355–1361. doi: 10.2337/diab.44.12.1355. [DOI] [PubMed] [Google Scholar]
  33. Raccah D., Coste T., Cameron N. E., Dufayet D., Vague P., Hohman T. C. Effect of the aldose reductase inhibitor tolrestat on nerve conduction velocity, Na/K ATPase activity, and polyols in red blood cells, sciatic nerve, kidney cortex, and kidney medulla of diabetic rats. J Diabetes Complications. 1998 May-Jun;12(3):154–162. doi: 10.1016/s1056-8727(97)00093-7. [DOI] [PubMed] [Google Scholar]
  34. Reddy C. C., Pierzchala P. A., Hamilton G. A. myo-Inositol oxygenase from hog kidney. II. Catalytic properties of the homogeneous enzyme. J Biol Chem. 1981 Aug 25;256(16):8519–8524. [PubMed] [Google Scholar]
  35. Reddy C. C., Swan J. S., Hamilton G. A. myo-Inositol oxygenase from hog kidney. I. Purification and characterization of the oxygenase and of an enzyme complex containing the oxygenase and D-glucuronate reductase. J Biol Chem. 1981 Aug 25;256(16):8510–8518. [PubMed] [Google Scholar]
  36. Whiting P. H., Palmano K. P., Hawthorne J. N. Enzymes of myo-inositol and inositol lipid metabolism in rats with streptozotocin-induced diabetes. Biochem J. 1979 Jun 1;179(3):549–553. doi: 10.1042/bj1790549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Winegrad A. I. Banting lecture 1986. Does a common mechanism induce the diverse complications of diabetes? Diabetes. 1987 Mar;36(3):396–406. doi: 10.2337/diab.36.3.396. [DOI] [PubMed] [Google Scholar]
  38. Yang Q., Dixit B., Wada J., Tian Y., Wallner E. I., Srivastva S. K., Kanwar Y. S. Identification of a renal-specific oxido-reductase in newborn diabetic mice. Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):9896–9901. doi: 10.1073/pnas.160266197. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES