Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Dec 1;360(Pt 2):321–333. doi: 10.1042/0264-6021:3600321

Importance of post-transcriptional regulation of chemokine genes by oxidative stress.

C Josse 1, J R Boelaert 1, M Best-Belpomme 1, J Piette 1
PMCID: PMC1222232  PMID: 11716760

Abstract

The transcription factor, nuclear factor kappa B (NF-kappa B), is activated by various stimuli including cytokines, radiation, viruses and oxidative stress. Here we show that, although induction with H(2)O(2) gives rise to NF-kappa B nuclear translocation in both lymphocyte (CEM) and monocyte (U937) cells, it leads only to the production of mRNA species encoding interleukin-8 (IL-8) and macrophage inflammatory protein 1 alpha in U937 cells. Under similar conditions these mRNA species are not observed in CEM cells. With the use of a transient transfection assay of U937 cells transfected with reporter constructs of the IL-8 promoter and subsequently treated with H(2)O(2), we show that (1) IL-8-promoter-driven transcription is stimulated in both U937 and CEM cells and (2) the NF-kappa B site is crucial for activation because its deletion abolishes activation by H(2)O(2). The production of IL-8 mRNA in U937 cells is inhibited by the NF-kappa B inhibitors clasto-lactacystin-beta-lactone and E-64D (l-3-trans-ethoxycarbonyloxirane-2-carbonyl-L-leucine-3-methyl amide) but requires protein synthesis de novo. Moreover, inhibition of the p38 mitogen-activated protein kinase also decreases the IL-8 mRNA up-regulation mediated by H(2)O(2). Taken together, these results show the importance of post-transcriptional events controlled by a p38-dependent pathway in the production of IL-8 mRNA in U937. The much lower activation of p38 in CEM cells in response to H(2)O(2) could explain the lack of stabilization of IL-8 mRNA in these cells.

Full Text

The Full Text of this article is available as a PDF (413.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baggiolini M., Loetscher P. Chemokines in inflammation and immunity. Immunol Today. 2000 Sep;21(9):418–420. doi: 10.1016/s0167-5699(00)01672-8. [DOI] [PubMed] [Google Scholar]
  2. Brewer G. An A + U-rich element RNA-binding factor regulates c-myc mRNA stability in vitro. Mol Cell Biol. 1991 May;11(5):2460–2466. doi: 10.1128/mcb.11.5.2460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buzby J. S., Brewer G., Nugent D. J. Developmental regulation of RNA transcript destabilization by A + U-rich elements is AUF1-dependent. J Biol Chem. 1999 Nov 26;274(48):33973–33978. doi: 10.1074/jbc.274.48.33973. [DOI] [PubMed] [Google Scholar]
  4. Caput D., Beutler B., Hartog K., Thayer R., Brown-Shimer S., Cerami A. Identification of a common nucleotide sequence in the 3'-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1670–1674. doi: 10.1073/pnas.83.6.1670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen C. Y., Gherzi R., Andersen J. S., Gaietta G., Jürchott K., Royer H. D., Mann M., Karin M. Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes Dev. 2000 May 15;14(10):1236–1248. [PMC free article] [PubMed] [Google Scholar]
  6. DeForge L. E., Preston A. M., Takeuchi E., Kenney J., Boxer L. A., Remick D. G. Regulation of interleukin 8 gene expression by oxidant stress. J Biol Chem. 1993 Dec 5;268(34):25568–25576. [PubMed] [Google Scholar]
  7. Dean J. L., Wait R., Mahtani K. R., Sully G., Clark A. R., Saklatvala J. The 3' untranslated region of tumor necrosis factor alpha mRNA is a target of the mRNA-stabilizing factor HuR. Mol Cell Biol. 2001 Feb;21(3):721–730. doi: 10.1128/MCB.21.3.721-730.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DiDonato J. A., Hayakawa M., Rothwarf D. M., Zandi E., Karin M. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature. 1997 Aug 7;388(6642):548–554. doi: 10.1038/41493. [DOI] [PubMed] [Google Scholar]
  9. Fan X. C., Steitz J. A. Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J. 1998 Jun 15;17(12):3448–3460. doi: 10.1093/emboj/17.12.3448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grove M., Plumb M. C/EBP, NF-kappa B, and c-Ets family members and transcriptional regulation of the cell-specific and inducible macrophage inflammatory protein 1 alpha immediate-early gene. Mol Cell Biol. 1993 Sep;13(9):5276–5289. doi: 10.1128/mcb.13.9.5276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hatada E. N., Krappmann D., Scheidereit C. NF-kappaB and the innate immune response. Curr Opin Immunol. 2000 Feb;12(1):52–58. doi: 10.1016/s0952-7915(99)00050-3. [DOI] [PubMed] [Google Scholar]
  12. Hew Y., Lau C., Grzelczak Z., Keeley F. W. Identification of a GA-rich sequence as a protein-binding site in the 3'-untranslated region of chicken elastin mRNA with a potential role in the developmental regulation of elastin mRNA stability. J Biol Chem. 2000 Aug 11;275(32):24857–24864. doi: 10.1074/jbc.M002776200. [DOI] [PubMed] [Google Scholar]
  13. Holtmann H., Winzen R., Holland P., Eickemeier S., Hoffmann E., Wallach D., Malinin N. L., Cooper J. A., Resch K., Kracht M. Induction of interleukin-8 synthesis integrates effects on transcription and mRNA degradation from at least three different cytokine- or stress-activated signal transduction pathways. Mol Cell Biol. 1999 Oct;19(10):6742–6753. doi: 10.1128/mcb.19.10.6742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huxford T., Huang D. B., Malek S., Ghosh G. The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell. 1998 Dec 11;95(6):759–770. doi: 10.1016/s0092-8674(00)81699-2. [DOI] [PubMed] [Google Scholar]
  15. Israël A. The IKK complex: an integrator of all signals that activate NF-kappaB? Trends Cell Biol. 2000 Apr;10(4):129–133. doi: 10.1016/s0962-8924(00)01729-3. [DOI] [PubMed] [Google Scholar]
  16. Janssen Y. M., Van Houten B., Borm P. J., Mossman B. T. Cell and tissue responses to oxidative damage. Lab Invest. 1993 Sep;69(3):261–274. [PubMed] [Google Scholar]
  17. Karin M., Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol. 2000;18:621–663. doi: 10.1146/annurev.immunol.18.1.621. [DOI] [PubMed] [Google Scholar]
  18. Karin M., Delhase M. The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol. 2000 Feb;12(1):85–98. doi: 10.1006/smim.2000.0210. [DOI] [PubMed] [Google Scholar]
  19. Kaufmann A., Gemsa D., Sprenger H. Differential desensitization of lipopolysaccharide-inducible chemokine gene expression in human monocytes and macrophages. Eur J Immunol. 2000 Jun;30(6):1562–1567. doi: 10.1002/1521-4141(200006)30:6<1562::AID-IMMU1562>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  20. Lai W. S., Carballo E., Thorn J. M., Kennington E. A., Blackshear P. J. Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to Au-rich elements and destabilization of mRNA. J Biol Chem. 2000 Jun 9;275(23):17827–17837. doi: 10.1074/jbc.M001696200. [DOI] [PubMed] [Google Scholar]
  21. Lakshminarayanan V., Beno D. W., Costa R. H., Roebuck K. A. Differential regulation of interleukin-8 and intercellular adhesion molecule-1 by H2O2 and tumor necrosis factor-alpha in endothelial and epithelial cells. J Biol Chem. 1997 Dec 26;272(52):32910–32918. doi: 10.1074/jbc.272.52.32910. [DOI] [PubMed] [Google Scholar]
  22. Lakshminarayanan V., Drab-Weiss E. A., Roebuck K. A. H2O2 and tumor necrosis factor-alpha induce differential binding of the redox-responsive transcription factors AP-1 and NF-kappaB to the interleukin-8 promoter in endothelial and epithelial cells. J Biol Chem. 1998 Dec 4;273(49):32670–32678. doi: 10.1074/jbc.273.49.32670. [DOI] [PubMed] [Google Scholar]
  23. Lasa M., Mahtani K. R., Finch A., Brewer G., Saklatvala J., Clark A. R. Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol Cell Biol. 2000 Jun;20(12):4265–4274. doi: 10.1128/mcb.20.12.4265-4274.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lentsch A. B., Ward P. A. The NFkappaBb/IkappaB system in acute inflammation. Arch Immunol Ther Exp (Warsz) 2000;48(2):59–63. [PubMed] [Google Scholar]
  25. Levy N. S., Chung S., Furneaux H., Levy A. P. Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem. 1998 Mar 13;273(11):6417–6423. doi: 10.1074/jbc.273.11.6417. [DOI] [PubMed] [Google Scholar]
  26. Lieberman A. P., Pitha P. M., Shin M. L. Protein kinase regulates tumor necrosis factor mRNA stability in virus-stimulated astrocytes. J Exp Med. 1990 Sep 1;172(3):989–992. doi: 10.1084/jem.172.3.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Martin T., Cardarelli P. M., Parry G. C., Felts K. A., Cobb R. R. Cytokine induction of monocyte chemoattractant protein-1 gene expression in human endothelial cells depends on the cooperative action of NF-kappa B and AP-1. Eur J Immunol. 1997 May;27(5):1091–1097. doi: 10.1002/eji.1830270508. [DOI] [PubMed] [Google Scholar]
  28. Pagès G., Berra E., Milanini J., Levy A. P., Pouysségur J. Stress-activated protein kinases (JNK and p38/HOG) are essential for vascular endothelial growth factor mRNA stability. J Biol Chem. 2000 Aug 25;275(34):26484–26491. doi: 10.1074/jbc.M002104200. [DOI] [PubMed] [Google Scholar]
  29. Pahl H. L. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999 Nov 22;18(49):6853–6866. doi: 10.1038/sj.onc.1203239. [DOI] [PubMed] [Google Scholar]
  30. Peng S. S., Chen C. Y., Xu N., Shyu A. B. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J. 1998 Jun 15;17(12):3461–3470. doi: 10.1093/emboj/17.12.3461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Roebuck K. A., Carpenter L. R., Lakshminarayanan V., Page S. M., Moy J. N., Thomas L. L. Stimulus-specific regulation of chemokine expression involves differential activation of the redox-responsive transcription factors AP-1 and NF-kappaB. J Leukoc Biol. 1999 Mar;65(3):291–298. doi: 10.1002/jlb.65.3.291. [DOI] [PubMed] [Google Scholar]
  32. Rollins B. J. Chemokines. Blood. 1997 Aug 1;90(3):909–928. [PubMed] [Google Scholar]
  33. Rossi D., Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol. 2000;18:217–242. doi: 10.1146/annurev.immunol.18.1.217. [DOI] [PubMed] [Google Scholar]
  34. Rutault K., Hazzalin C. A., Mahadevan L. C. Combinations of ERK and p38 MAPK inhibitors ablate tumor necrosis factor-alpha (TNF-alpha ) mRNA induction. Evidence for selective destabilization of TNF-alpha transcripts. J Biol Chem. 2000 Nov 13;276(9):6666–6674. doi: 10.1074/jbc.M005486200. [DOI] [PubMed] [Google Scholar]
  35. Ryseck R. P., Bull P., Takamiya M., Bours V., Siebenlist U., Dobrzanski P., Bravo R. RelB, a new Rel family transcription activator that can interact with p50-NF-kappa B. Mol Cell Biol. 1992 Feb;12(2):674–684. doi: 10.1128/mcb.12.2.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schoonbroodt S., Ferreira V., Best-Belpomme M., Boelaert J. R., Legrand-Poels S., Korner M., Piette J. Crucial role of the amino-terminal tyrosine residue 42 and the carboxyl-terminal PEST domain of I kappa B alpha in NF-kappa B activation by an oxidative stress. J Immunol. 2000 Apr 15;164(8):4292–4300. doi: 10.4049/jimmunol.164.8.4292. [DOI] [PubMed] [Google Scholar]
  37. Schoonbroodt S., Legrand-Poels S., Best-Belpomme M., Piette J. Activation of the NF-kappaB transcription factor in a T-lymphocytic cell line by hypochlorous acid. Biochem J. 1997 Feb 1;321(Pt 3):777–785. doi: 10.1042/bj3210777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schreck R., Rieber P., Baeuerle P. A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 1991 Aug;10(8):2247–2258. doi: 10.1002/j.1460-2075.1991.tb07761.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Shi M. M., Godleski J. J., Paulauskis J. D. Molecular cloning and posttranscriptional regulation of macrophage inflammatory protein-1 alpha in alveolar macrophages. Biochem Biophys Res Commun. 1995 Jun 6;211(1):289–295. doi: 10.1006/bbrc.1995.1809. [DOI] [PubMed] [Google Scholar]
  40. Shi M. M., Godleski J. J., Paulauskis J. D. Regulation of macrophage inflammatory protein-1alpha mRNA by oxidative stress. J Biol Chem. 1996 Mar 8;271(10):5878–5883. doi: 10.1074/jbc.271.10.5878. [DOI] [PubMed] [Google Scholar]
  41. Stoeckle M. Y. Post-transcriptional regulation of gro alpha, beta, gamma, and IL-8 mRNAs by IL-1 beta. Nucleic Acids Res. 1991 Feb 25;19(4):917–920. doi: 10.1093/nar/19.4.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sun Y., Oberley L. W. Redox regulation of transcriptional activators. Free Radic Biol Med. 1996;21(3):335–348. doi: 10.1016/0891-5849(96)00109-8. [DOI] [PubMed] [Google Scholar]
  43. Verma I. M., Stevenson J. IkappaB kinase: beginning, not the end. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11758–11760. doi: 10.1073/pnas.94.22.11758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Villarete L. H., Remick D. G. Transcriptional and post-transcriptional regulation of interleukin-8. Am J Pathol. 1996 Nov;149(5):1685–1693. [PMC free article] [PubMed] [Google Scholar]
  45. Wang W., Caldwell M. C., Lin S., Furneaux H., Gorospe M. HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. EMBO J. 2000 May 15;19(10):2340–2350. doi: 10.1093/emboj/19.10.2340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Weiss S. J. Tissue destruction by neutrophils. N Engl J Med. 1989 Feb 9;320(6):365–376. doi: 10.1056/NEJM198902093200606. [DOI] [PubMed] [Google Scholar]
  47. Winyard P. G., Blake D. R. Antioxidants, redox-regulated transcription factors, and inflammation. Adv Pharmacol. 1997;38:403–421. doi: 10.1016/s1054-3589(08)60993-x. [DOI] [PubMed] [Google Scholar]
  48. Winzen R., Kracht M., Ritter B., Wilhelm A., Chen C. Y., Shyu A. B., Müller M., Gaestel M., Resch K., Holtmann H. The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J. 1999 Sep 15;18(18):4969–4980. doi: 10.1093/emboj/18.18.4969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Winzen R., Kracht M., Ritter B., Wilhelm A., Chen C. Y., Shyu A. B., Müller M., Gaestel M., Resch K., Holtmann H. The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J. 1999 Sep 15;18(18):4969–4980. doi: 10.1093/emboj/18.18.4969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Woronicz J. D., Gao X., Cao Z., Rothe M., Goeddel D. V. IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science. 1997 Oct 31;278(5339):866–869. doi: 10.1126/science.278.5339.866. [DOI] [PubMed] [Google Scholar]
  51. Zhang W., Wagner B. J., Ehrenman K., Schaefer A. W., DeMaria C. T., Crater D., DeHaven K., Long L., Brewer G. Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Mol Cell Biol. 1993 Dec;13(12):7652–7665. doi: 10.1128/mcb.13.12.7652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zlotnik A., Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000 Feb;12(2):121–127. doi: 10.1016/s1074-7613(00)80165-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES