Abstract
The influence of oxidation of membrane thiol groups on lysosomal proton permeability was studied by measuring lysosomal pH with FITC-conjugated dextran, determining the membrane potential with 3,3'-dipropylthiadicarbocyanine iodide and monitoring their proton leakage with p-nitrophenol. Residual membrane thiol groups were measured with 5,5'-dithiobis-(2-nitrobenzoic acid). The lysosomal membrane thiol groups were modified by treatment with diamide and dithiothreitol. SDS/PAGE revealed aggregations of the membrane proteins induced by the treatment of lysosomes with diamide. The cross-linkage of proteins could be abolished by subsequent treatment with dithiothreitol, indicating that the proteins were linked via disulphide bonds. Treating the lysosomes with diamide decreased their membrane thiol groups and caused increases in lysosomal pH, membrane potential and proton leakage, which could be reversed by treatment of the lysosomes with dithiothreitol. This indicates that the lysosomal proton permeability can be increased by oxidation of the membrane thiol groups and restored to the normal level by reduction of the groups. Treatment of the lysosomes with N-ethylmaleimide reduced their membrane thiol groups but did not change the lysosomal pH or their degree of proton leakage. It suggests that protein aggregation may be an important mechanism for the increase in lysosomal proton permeability. The results raise the possibility that the proton permeability of lysosomes in vivo may be affected by the redox states of their membrane thiol groups.
Full Text
The Full Text of this article is available as a PDF (136.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abok K., Rundquist I., Forsberg B., Brunk U. Dimethylsulfoxide increases the survival and lysosomal stability of mouse peritoneal macrophages exposed to low-LET ionizing radiation and/or ionic iron in culture. Virchows Arch B Cell Pathol Incl Mol Pathol. 1984;46(4):307–320. doi: 10.1007/BF02890319. [DOI] [PubMed] [Google Scholar]
- Benga G., Popescu O., Pop V. I. Water exchange through erythrocyte membranes: p-chloromercuribenzene sulfonate inhibition of water diffusion in ghosts studied by a nuclear magnetic resonance technique. Biosci Rep. 1985 Mar;5(3):223–228. doi: 10.1007/BF01119591. [DOI] [PubMed] [Google Scholar]
- Casey R. P., Hollemans M., Tager J. M. The permeability of the lysosomal membrane to small ions. Biochim Biophys Acta. 1978 Mar 21;508(1):15–26. doi: 10.1016/0005-2736(78)90185-2. [DOI] [PubMed] [Google Scholar]
- Chou H. F., Passage M., Jonas A. J. Lysosomal sulphate transport is dependent upon sulphydryl groups. Biochem J. 1998 Mar 1;330(Pt 2):713–717. doi: 10.1042/bj3300713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deamer D. W., Bramhall J. Permeability of lipid bilayers to water and ionic solutes. Chem Phys Lipids. 1986 Jun-Jul;40(2-4):167–188. doi: 10.1016/0009-3084(86)90069-1. [DOI] [PubMed] [Google Scholar]
- Deamer D. W., Nichols J. W. Proton flux mechanisms in model and biological membranes. J Membr Biol. 1989 Feb;107(2):91–103. doi: 10.1007/BF01871715. [DOI] [PubMed] [Google Scholar]
- Dell'Antone P., Piergallini L. The antineoplastic drug lonidamine interferes with the acidification mechanism of cell organelles. Biochim Biophys Acta. 1997 Aug 21;1358(1):46–52. doi: 10.1016/s0167-4889(97)00049-9. [DOI] [PubMed] [Google Scholar]
- Deuticke B., Poser B., Lütkemeier P., Haest C. W. Formation of aqueous pores in the human erythrocyte membrane after oxidative cross-linking of spectrin by diamide. Biochim Biophys Acta. 1983 Jun 10;731(2):196–210. doi: 10.1016/0005-2736(83)90009-3. [DOI] [PubMed] [Google Scholar]
- Deuticke B. The role of membrane sulfhydryls in passive, mediated transport processes and for the barrier function of the erythrocyte membrane. Membr Biochem. 1986;6(4):309–326. doi: 10.3109/09687688609065455. [DOI] [PubMed] [Google Scholar]
- Dressler V., Haest C. W., Plasa G., Deuticke B., Erusalimsky J. D. Stabilizing factors of phospholipid asymmetry in the erythrocyte membrane. Biochim Biophys Acta. 1984 Aug 22;775(2):189–196. doi: 10.1016/0005-2736(84)90170-6. [DOI] [PubMed] [Google Scholar]
- Franck P. F., Op den Kamp J. A., Roelofsen B., van Deenen L. L. Does diamide treatment of intact human erythrocytes cause a loss of phospholipid asymmetry? Biochim Biophys Acta. 1986 May 9;857(1):127–130. doi: 10.1016/0005-2736(86)90106-9. [DOI] [PubMed] [Google Scholar]
- Gimpl G., Burger K., Fahrenholz F. Cholesterol as modulator of receptor function. Biochemistry. 1997 Sep 9;36(36):10959–10974. doi: 10.1021/bi963138w. [DOI] [PubMed] [Google Scholar]
- Gutknecht J., Walter A. Transport of protons and hydrochloric acid through lipid bilayer membranes. Biochim Biophys Acta. 1981 Feb 20;641(1):183–188. doi: 10.1016/0005-2736(81)90582-4. [DOI] [PubMed] [Google Scholar]
- Harikumar P., Reeves J. P. The lysosomal proton pump is electrogenic. J Biol Chem. 1983 Sep 10;258(17):10403–10410. [PubMed] [Google Scholar]
- Kosower N. S., Kosower E. M., Koppel R. L. Sensitivity of hemoglobin thiol groups within red blood cells of rat during oxidation of glutathione. Eur J Biochem. 1977 Aug 1;77(3):529–534. doi: 10.1111/j.1432-1033.1977.tb11695.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lozier R. H., Niederberger W., Bogomolni R. A., Hwang S., Stoeckenius W. Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments, Halobacterium halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane. Biochim Biophys Acta. 1976 Sep 13;440(3):545–556. doi: 10.1016/0005-2728(76)90041-4. [DOI] [PubMed] [Google Scholar]
- Macey R. I., Moura T. Water channels. Methods Enzymol. 1986;127:598–609. doi: 10.1016/0076-6879(86)27047-0. [DOI] [PubMed] [Google Scholar]
- Mak I. T., Misra H. P., Weglicki W. B. Temporal relationship of free radical-induced lipid peroxidation and loss of latent enzyme activity in highly enriched hepatic lysosomes. J Biol Chem. 1983 Nov 25;258(22):13733–13737. [PubMed] [Google Scholar]
- Marrink S. J., Jähnig F., Berendsen H. J. Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations. Biophys J. 1996 Aug;71(2):632–647. doi: 10.1016/S0006-3495(96)79264-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meissner G. Ionic permeability of isolated muscle sarcoplasmic reticulum and liver endoplasmic reticulum vesicles. Methods Enzymol. 1988;157:417–437. doi: 10.1016/0076-6879(88)57094-5. [DOI] [PubMed] [Google Scholar]
- Meissner G., Young R. C. Proton permeability of sarcoplasmic reticulum vesicles. J Biol Chem. 1980 Jul 25;255(14):6814–6819. [PubMed] [Google Scholar]
- Miyamoto A., Araiso T., Koyama T., Ohshika H. Membrane viscosity correlates with alpha 1-adrenergic signal transduction of the aged rat cerebral cortex. J Neurochem. 1990 Jul;55(1):70–75. doi: 10.1111/j.1471-4159.1990.tb08822.x. [DOI] [PubMed] [Google Scholar]
- Moriyama Y., Maeda M., Futai M. Involvement of a non-proton pump factor (possibly Donnan-type equilibrium) in maintenance of an acidic pH in lysosomes. FEBS Lett. 1992 May 4;302(1):18–20. doi: 10.1016/0014-5793(92)80274-k. [DOI] [PubMed] [Google Scholar]
- Ohkuma S., Moriyama Y., Takano T. Identification and characterization of a proton pump on lysosomes by fluorescein-isothiocyanate-dextran fluorescence. Proc Natl Acad Sci U S A. 1982 May;79(9):2758–2762. doi: 10.1073/pnas.79.9.2758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pisoni R. L., Thoene J. G. The transport systems of mammalian lysosomes. Biochim Biophys Acta. 1991 Dec 12;1071(4):351–373. doi: 10.1016/0304-4157(91)90002-e. [DOI] [PubMed] [Google Scholar]
- Schneider D. L., Burnside J., Gorga F. R., Nettleton C. J. Properties of the membrane proteins of rat liver lysosomes. The majority of lysosomal membrane proteins are exposed to the cytoplasm. Biochem J. 1978 Oct 15;176(1):75–82. doi: 10.1042/bj1760075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slater T. F., Riley P. A. Photosensitization and lysosomal damage. Nature. 1966 Jan 8;209(5019):151–154. doi: 10.1038/209151a0. [DOI] [PubMed] [Google Scholar]
- Toon M. R., Dorogi P. L., Lukacovic M. F., Solomon A. K. Binding of DTNB to band 3 in the human red cell membrane. Biochim Biophys Acta. 1985 Aug 27;818(2):158–170. doi: 10.1016/0005-2736(85)90558-9. [DOI] [PubMed] [Google Scholar]
- Toon M. R., Solomon A. K. Control of red cell urea and water permeability by sulfhydryl reagents. Biochim Biophys Acta. 1986 Aug 21;860(2):361–375. doi: 10.1016/0005-2736(86)90533-x. [DOI] [PubMed] [Google Scholar]
- Yao J., Zhang G. J. Loss of lysosomal integrity caused by the decrease of proton translocation in methylene blue-mediated photosensitization. Biochim Biophys Acta. 1996 Oct 2;1284(1):35–40. doi: 10.1016/0005-2736(96)00105-8. [DOI] [PubMed] [Google Scholar]
- Yao J., Zhang G. J. Lysosomal destabilization via increased potassium ion permeability following photodamage. Biochim Biophys Acta. 1997 Jan 31;1323(2):334–342. doi: 10.1016/s0005-2736(96)00202-7. [DOI] [PubMed] [Google Scholar]
- Zhang G. J., Liu H. W., Yang L., Zhong Y. G., Zheng Y. Z. Influence of membrane physical state on the lysosomal proton permeability. J Membr Biol. 2000 May 1;175(1):53–62. doi: 10.1007/s002320001054. [DOI] [PubMed] [Google Scholar]
- Zhang G. J., Yao J. The direct cause of photodamage-induced lysosomal destabilization. Biochim Biophys Acta. 1997 May 22;1326(1):75–82. doi: 10.1016/s0005-2736(97)00009-6. [DOI] [PubMed] [Google Scholar]