Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Dec 1;360(Pt 2):371–377. doi: 10.1042/0264-6021:3600371

Gluconeogenesis from glutamine and lactate in the isolated human renal proximal tubule: longitudinal heterogeneity and lack of response to adrenaline.

A Conjard 1, M Martin 1, J Guitton 1, G Baverel 1, B Ferrier 1
PMCID: PMC1222237  PMID: 11716765

Abstract

Recent studies in vivo have suggested that, in humans in the postabsorptive state, the kidneys contribute a significant fraction of systemic gluconeogenesis, and that the stimulation of renal gluconeogenesis may fully explain the increase in systemic gluconeogenesis during adrenaline infusion. Given the potential importance of human renal gluconeogenesis in various physiological and pathophysiological situations, we have conducted a study in vitro to further characterize this metabolic process and its regulation. For this, successive segments (S1, S2 and S3) of human proximal tubules were dissected and incubated with physiological concentrations of glutamine or lactate, two potential gluconeogenic substrates that are taken up by the human kidney in vivo, and glucose production was measured. The effects of adrenaline, noradrenaline and cAMP, a well established stimulator of gluconeogenesis in animal kidney tubules, were also studied in suspensions of human renal proximal tubules. The results indicate that the three successive segments have about the same capacity to synthesize glucose from glutamine; by contrast, the S2 and S3 segments synthesize more glucose from lactate than the S1 segment. In the S2 and S3 segments, lactate appears to be a better gluconeogenic precursor than glutamine. The addition of cAMP, but not of adrenaline or noradrenaline, led to the stimulation of gluconeogenesis from lactate and glutamine by human proximal tubules. These results indicate that, in the human kidney in vivo, lactate might be the main gluconeogenic precursor, and that the stimulation of renal gluconeogenesis observed in vivo upon adrenaline infusion may result from an indirect action on the renal proximal tubule.

Full Text

The Full Text of this article is available as a PDF (119.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baverel G., Bonnard M., Pellet M. Lactate and pyruvate metabolism in isolated human kidney tubules. FEBS Lett. 1979 May 15;101(2):282–286. doi: 10.1016/0014-5793(79)81026-1. [DOI] [PubMed] [Google Scholar]
  2. Benoy M. P., Elliott K. A. The metabolism of lactic and pyruvic acids in normal and tumour tissues: Synthesis of carbohydrate. Biochem J. 1937 Aug;31(8):1268–1275. doi: 10.1042/bj0311268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biava C., Grossman A., West M. Ultrastructural observations on renal glycogen in normal and pathologic human kidneys. Lab Invest. 1966 Jan;15(1 Pt 2):330–356. [PubMed] [Google Scholar]
  4. Brundin T., Wahren J. Renal oxygen consumption, thermogenesis, and amino acid utilization during i.v. infusion of amino acids in man. Am J Physiol. 1994 Nov;267(5 Pt 1):E648–E655. doi: 10.1152/ajpendo.1994.267.5.E648. [DOI] [PubMed] [Google Scholar]
  5. Cersosimo E., Garlick P., Ferretti J. Insulin regulation of renal glucose metabolism in humans. Am J Physiol. 1999 Jan;276(1 Pt 1):E78–E84. doi: 10.1152/ajpendo.1999.276.1.E78. [DOI] [PubMed] [Google Scholar]
  6. Cersosimo E., Garlick P., Ferretti J. Renal substrate metabolism and gluconeogenesis during hypoglycemia in humans. Diabetes. 2000 Jul;49(7):1186–1193. doi: 10.2337/diabetes.49.7.1186. [DOI] [PubMed] [Google Scholar]
  7. Chabardès D., Imbert-Teboul M., Montégut M., Clique A., Morel F. Catecholamine sensitive adenylate cyclase activity in different segments of the rabbit nephron. Pflugers Arch. 1975 Dec 19;361(1):9–15. doi: 10.1007/BF00587334. [DOI] [PubMed] [Google Scholar]
  8. Chi M. M., Lowry C. V., Lowry O. H. An improved enzymatic cycle for nicotinamide-adenine dinucleotide phosphate. Anal Biochem. 1978 Aug 15;89(1):119–129. doi: 10.1016/0003-2697(78)90732-7. [DOI] [PubMed] [Google Scholar]
  9. Dubourg L., Michoudet C., Cochat P., Baverel G. Human kidney tubules detoxify chloroacetaldehyde, a presumed nephrotoxic metabolite of ifosfamide. J Am Soc Nephrol. 2001 Aug;12(8):1615–1623. doi: 10.1681/ASN.V1281615. [DOI] [PubMed] [Google Scholar]
  10. Ekberg K., Landau B. R., Wajngot A., Chandramouli V., Efendic S., Brunengraber H., Wahren J. Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes. 1999 Feb;48(2):292–298. doi: 10.2337/diabetes.48.2.292. [DOI] [PubMed] [Google Scholar]
  11. Fouque D., Dugelay S., Martin G., Combet J., Baverel G. Alanine metabolism in isolated human kidney tubules--Use of a mathematical model. Eur J Biochem. 1996 Feb 15;236(1):128–137. doi: 10.1111/j.1432-1033.1996.t01-1-00128.x. [DOI] [PubMed] [Google Scholar]
  12. Guder W. G., Ross B. D. Enzyme distribution along the nephron. Kidney Int. 1984 Aug;26(2):101–111. doi: 10.1038/ki.1984.143. [DOI] [PubMed] [Google Scholar]
  13. Guder W. G., Rupprecht A. Metabolism of isolated kidney tubules. Independent actions of catecholamines on renal cyclic adenosine 3':5'-monophosphate levels and gluconeogenesis. Eur J Biochem. 1975 Mar 17;52(2):283–290. doi: 10.1111/j.1432-1033.1975.tb03996.x. [DOI] [PubMed] [Google Scholar]
  14. Guder W., Wiesner W., Stukowski B., Wieland O. Metabolism of isolated kidney tubules. Oxygen consumption, gluconeogenesis and the effect of cyclic nucleotides in tubules from starved rats. Hoppe Seylers Z Physiol Chem. 1971 Oct;352(10):1319–1328. doi: 10.1515/bchm2.1971.352.2.1319. [DOI] [PubMed] [Google Scholar]
  15. Hume R., Bell J. E., Hallas A., Burchell A. Immunohistochemical localisation of glucose-6-phosphatase in developing human kidney. Histochemistry. 1994 Jul;101(6):413–417. doi: 10.1007/BF00269491. [DOI] [PubMed] [Google Scholar]
  16. KREBS H. A. RENAL GLUCONEOGENESIS. Adv Enzyme Regul. 1963;1:385–400. doi: 10.1016/0065-2571(63)90034-7. [DOI] [PubMed] [Google Scholar]
  17. Kessar P., Saggerson E. D. Evidence that catecholamines stimulate renal gluconeogenesis through an alpha 1-type of adrenoceptor. Biochem J. 1980 Jul 15;190(1):119–123. doi: 10.1042/bj1900119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kim J. K., Frohnert P. P., Hui Y. S., Barnes L. D., Farrow G. M., Dousa T. P. Enzymes of cyclic 3',5'-nucleotide metabolism in human renal cortex and renal adenocarcinoma. Kidney Int. 1977 Sep;12(3):172–183. doi: 10.1038/ki.1977.98. [DOI] [PubMed] [Google Scholar]
  19. Kurokawa K., Massry S. G. Evidence for stimulation of renal gluconeogenesis by catecholamines. J Clin Invest. 1973 Apr;52(4):961–964. doi: 10.1172/JCI107261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kurokawa K., Ohno T., Rasmussen H. Ionic control of renal gluconeogenesis. II. The effects of Ca2+ and H+ upon the response to parathyroid hormone and cyclic AMP. Biochim Biophys Acta. 1973 Jun 20;313(1):32–41. doi: 10.1016/0304-4165(73)90186-4. [DOI] [PubMed] [Google Scholar]
  21. MacDonald D. W., Saggerson E. D. Hormonal control of gluconeogenesis in tubule fragments from renal cortex of fed rats. Effects of alpha-adrenergic stimuli, glucagon, theophylline and papaverine. Biochem J. 1977 Oct 15;168(1):33–42. doi: 10.1042/bj1680033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maleque A., Endou H., Koseki C., Sakai F. Nephron heterogeneity: gluconeogenesis from pyruvate in rabbit nephron. FEBS Lett. 1980 Jul 28;116(2):154–156. doi: 10.1016/0014-5793(80)80631-4. [DOI] [PubMed] [Google Scholar]
  23. Martin G., Durozard D., Besson J., Baverel G. Effect of the antiepileptic drug sodium valproate on glutamine and glutamate metabolism in isolated human kidney tubules. Biochim Biophys Acta. 1990 Mar 26;1033(3):261–266. doi: 10.1016/0304-4165(90)90130-o. [DOI] [PubMed] [Google Scholar]
  24. Mattenheimer H., Pollak V. E., Muehrcke R. C. Quantitative enzyme patterns in the nephron of the healthy human kidney. Nephron. 1970;7(2):144–154. doi: 10.1159/000179816. [DOI] [PubMed] [Google Scholar]
  25. Meyer C., Dostou J. M., Gerich J. E. Role of the human kidney in glucose counterregulation. Diabetes. 1999 May;48(5):943–948. doi: 10.2337/diabetes.48.5.943. [DOI] [PubMed] [Google Scholar]
  26. Meyer C., Stumvoll M., Nadkarni V., Dostou J., Mitrakou A., Gerich J. Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus. J Clin Invest. 1998 Aug 1;102(3):619–624. doi: 10.1172/JCI2415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nagata N., Rasmussen H. Parathyroid hormone, 3'5' AMP, Ca++, and renal gluconeogenesis. Proc Natl Acad Sci U S A. 1970 Feb;65(2):368–374. doi: 10.1073/pnas.65.2.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nakada J., Yamada H., Endou H. Evidence that alpha-1-adrenergic stimuli specifically increase gluconeogenesis of the isolated proximal convoluted tubule in the rat. Ren Physiol. 1986;9(4):213–222. doi: 10.1159/000173086. [DOI] [PubMed] [Google Scholar]
  29. Nieth H., Schollmeyer P. Substrate-utilization of the human kidney. Nature. 1966 Mar 19;209(5029):1244–1245. doi: 10.1038/2091244a0. [DOI] [PubMed] [Google Scholar]
  30. OWEN E. E., ROBINSON R. R. Amino acid extraction and ammonia metabolism by the human kidney during the prolonged administration of ammonium chloride. J Clin Invest. 1963 Feb;42:263–276. doi: 10.1172/JCI104713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Owen O. E., Felig P., Morgan A. P., Wahren J., Cahill G. F., Jr Liver and kidney metabolism during prolonged starvation. J Clin Invest. 1969 Mar;48(3):574–583. doi: 10.1172/JCI106016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Owen O. E., Reichle F. A., Mozzoli M. A., Kreulen T., Patel M. S., Elfenbein I. B., Golsorkhi M., Chang K. H., Rao N. S., Sue H. S. Hepatic, gut, and renal substrate flux rates in patients with hepatic cirrhosis. J Clin Invest. 1981 Jul;68(1):240–252. doi: 10.1172/JCI110240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rizza R. A., Cryer P. E., Haymond M. W., Gerich J. E. Adrenergic mechanisms for the effects of epinephrine on glucose production and clearance in man. J Clin Invest. 1980 Mar;65(3):682–689. doi: 10.1172/JCI109714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roobol A., Alleyne G. A. Regulation of renal gluconeogenesis by calcium ions, hormones and adenosine 3':5'-cyclic monophosphate. Biochem J. 1973 May;134(1):157–165. doi: 10.1042/bj1340157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ross B. D., Espinal J., Silva P. Glucose metabolism in renal tubular function. Kidney Int. 1986 Jan;29(1):54–67. doi: 10.1038/ki.1986.8. [DOI] [PubMed] [Google Scholar]
  36. Saggerson E. D., Carpenter C. A., Veiga J. A. Stimulation of renal gluconeogenesis by exogenous adenine nucleotides. Biochim Biophys Acta. 1983 Jan 4;755(1):119–126. doi: 10.1016/0304-4165(83)90281-7. [DOI] [PubMed] [Google Scholar]
  37. Schoolwerth A. C., Smith B. C., Culpepper R. M. Renal gluconeogenesis. Miner Electrolyte Metab. 1988;14(6):347–361. [PubMed] [Google Scholar]
  38. Stumvoll M., Chintalapudi U., Perriello G., Welle S., Gutierrez O., Gerich J. Uptake and release of glucose by the human kidney. Postabsorptive rates and responses to epinephrine. J Clin Invest. 1995 Nov;96(5):2528–2533. doi: 10.1172/JCI118314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stumvoll M., Meyer C., Kreider M., Perriello G., Gerich J. Effects of glucagon on renal and hepatic glutamine gluconeogenesis in normal postabsorptive humans. Metabolism. 1998 Oct;47(10):1227–1232. doi: 10.1016/s0026-0495(98)90328-6. [DOI] [PubMed] [Google Scholar]
  40. Stumvoll M., Meyer C., Perriello G., Kreider M., Welle S., Gerich J. Human kidney and liver gluconeogenesis: evidence for organ substrate selectivity. Am J Physiol. 1998 May;274(5 Pt 1):E817–E826. doi: 10.1152/ajpendo.1998.274.5.E817. [DOI] [PubMed] [Google Scholar]
  41. Tizianello A., De Ferrari G., Garibotto G., Gurreri G., Robaudo C. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest. 1980 May;65(5):1162–1173. doi: 10.1172/JCI109771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wahren J., Felig P. Renal substrate exchange in human diabetes mellitus. Diabetes. 1975 Aug;24(8):730–734. doi: 10.2337/diab.24.8.730. [DOI] [PubMed] [Google Scholar]
  43. Wang M. S., Kurokawa K. Renal gluconeogenesis: axial and internephron heterogeneity and the effect of parathyroid hormone. Am J Physiol. 1984 Jan;246(1 Pt 2):F59–F66. doi: 10.1152/ajprenal.1984.246.1.F59. [DOI] [PubMed] [Google Scholar]
  44. Watford M., Vinay P., Lemieux G., Gougoux A. Inhibition of renal gluconeogenesis and phosphoenolpyruvate carboxykinase activity by 3-mercaptopicolinic acid: studies in rat, guinea pig, dog, rabbit, and man. Can J Biochem. 1980 May;58(5):440–445. doi: 10.1139/o80-058. [DOI] [PubMed] [Google Scholar]
  45. Yanagawa N., Nagami G. T., Jo O., Uemasu J., Kurokawa K. Dissociation of gluconeogenesis from fluid and phosphate reabsorption in isolated rabbit proximal tubules. Kidney Int. 1984 Jun;25(6):869–873. doi: 10.1038/ki.1984.103. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES