Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Dec 1;360(Pt 2):413–419. doi: 10.1042/0264-6021:3600413

A constitutive 70 kDa heat-shock protein is localized on the fibres of spindles and asters at metaphase in an ATP-dependent manner: a new chaperone role is proposed.

C Agueli 1, F Geraci 1, G Giudice 1, L Chimenti 1, D Cascino 1, G Sconzo 1
PMCID: PMC1222242  PMID: 11716770

Abstract

In the present study, double immunofluorescence and immunoblot analysis have been used to show that centrosomes, isolated from Paracentrotus lividus sea urchin embryos at the first mitotic metaphase, contain the constitutive chaperone, heat-shock protein (HSP) 70. More specifically, we demonstrate that centrosomes contain only the HSP70-d isoform, which is one of the four isoforms identified in P. lividus. We also provide evidence that p34(cell division control kinase-2) and t complex polypeptide-1 (TCP-1) alpha, a subunit of the TCP-1 complex, are localized on the centrosomes. Furthermore, inhibition of TCP-1 in vivo, via microinjecting an anti-(TCP-1 alpha) antibody into P. lividus eggs before fertilization, either impaired mitosis or induced severe malformations in more than 50% of embryos. In addition, we have isolated the whole mitotic apparatus and shown that HSP70 localizes on the fibres of spindles and asters, and binds them in an ATP-dependent manner. These observations suggest that HSP70 has a chaperone role in assisting the TCP-1 complex in tubulin folding, when localized on centrosomes, and during the assembling and disassembling of the mitotic apparatus, when localized on the fibres of spindles and asters.

Full Text

The Full Text of this article is available as a PDF (196.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agashe V. R., Hartl F. U. Roles of molecular chaperones in cytoplasmic protein folding. Semin Cell Dev Biol. 2000 Feb;11(1):15–25. doi: 10.1006/scdb.1999.0347. [DOI] [PubMed] [Google Scholar]
  2. Barouch W., Prasad K., Greene L. E., Eisenberg E. ATPase activity associated with the uncoating of clathrin baskets by Hsp70. J Biol Chem. 1994 Nov 18;269(46):28563–28568. [PubMed] [Google Scholar]
  3. Barthelmes H. U., Grue P., Feineis S., Straub T., Boege F. Active DNA topoisomerase IIalpha is a component of the salt-stable centrosome core. J Biol Chem. 2000 Dec 8;275(49):38823–38830. doi: 10.1074/jbc.M007044200. [DOI] [PubMed] [Google Scholar]
  4. Brown C. R., Doxsey S. J., Hong-Brown L. Q., Martin R. L., Welch W. J. Molecular chaperones and the centrosome. A role for TCP-1 in microtubule nucleation. J Biol Chem. 1996 Jan 12;271(2):824–832. doi: 10.1074/jbc.271.2.824. [DOI] [PubMed] [Google Scholar]
  5. Brown C. R., Hong-Brown L. Q., Doxsey S. J., Welch W. J. Molecular chaperones and the centrosome. A role for HSP 73 in centrosomal repair following heat shock treatment. J Biol Chem. 1996 Jan 12;271(2):833–840. doi: 10.1074/jbc.271.2.833. [DOI] [PubMed] [Google Scholar]
  6. Chirico W. J., Waters M. G., Blobel G. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature. 1988 Apr 28;332(6167):805–810. doi: 10.1038/332805a0. [DOI] [PubMed] [Google Scholar]
  7. Deshaies R. J., Koch B. D., Werner-Washburne M., Craig E. A., Schekman R. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature. 1988 Apr 28;332(6167):800–805. doi: 10.1038/332800a0. [DOI] [PubMed] [Google Scholar]
  8. Dix D. J., Allen J. W., Collins B. W., Poorman-Allen P., Mori C., Blizard D. R., Brown P. R., Goulding E. H., Strong B. D., Eddy E. M. HSP70-2 is required for desynapsis of synaptonemal complexes during meiotic prophase in juvenile and adult mouse spermatocytes. Development. 1997 Nov;124(22):4595–4603. doi: 10.1242/dev.124.22.4595. [DOI] [PubMed] [Google Scholar]
  9. Ellis R. J., van der Vies S. M. Molecular chaperones. Annu Rev Biochem. 1991;60:321–347. doi: 10.1146/annurev.bi.60.070191.001541. [DOI] [PubMed] [Google Scholar]
  10. Frydman J., Nimmesgern E., Erdjument-Bromage H., Wall J. S., Tempst P., Hartl F. U. Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J. 1992 Dec;11(13):4767–4778. doi: 10.1002/j.1460-2075.1992.tb05582.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Greene L. E., Zinner R., Naficy S., Eisenberg E. Effect of nucleotide on the binding of peptides to 70-kDa heat shock protein. J Biol Chem. 1995 Feb 17;270(7):2967–2973. doi: 10.1074/jbc.270.7.2967. [DOI] [PubMed] [Google Scholar]
  12. Joshi H. C. Microtubule organizing centers and gamma-tubulin. Curr Opin Cell Biol. 1994 Feb;6(1):54–62. doi: 10.1016/0955-0674(94)90116-3. [DOI] [PubMed] [Google Scholar]
  13. Khodjakov A., Rieder C. L. The sudden recruitment of gamma-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J Cell Biol. 1999 Aug 9;146(3):585–596. doi: 10.1083/jcb.146.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Liang P., MacRae T. H. Molecular chaperones and the cytoskeleton. J Cell Sci. 1997 Jul;110(Pt 13):1431–1440. doi: 10.1242/jcs.110.13.1431. [DOI] [PubMed] [Google Scholar]
  16. Lindquist S., Craig E. A. The heat-shock proteins. Annu Rev Genet. 1988;22:631–677. doi: 10.1146/annurev.ge.22.120188.003215. [DOI] [PubMed] [Google Scholar]
  17. Melki R., Batelier G., Soulié S., Williams R. C., Jr Cytoplasmic chaperonin containing TCP-1: structural and functional characterization. Biochemistry. 1997 May 13;36(19):5817–5826. doi: 10.1021/bi962830o. [DOI] [PubMed] [Google Scholar]
  18. Mitchison T., Kirschner M. Microtubule assembly nucleated by isolated centrosomes. Nature. 1984 Nov 15;312(5991):232–237. doi: 10.1038/312232a0. [DOI] [PubMed] [Google Scholar]
  19. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  20. Ou Y., Rattner J. B. A subset of centrosomal proteins are arranged in a tubular conformation that is reproduced during centrosome duplication. Cell Motil Cytoskeleton. 2000 Sep;47(1):13–24. doi: 10.1002/1097-0169(200009)47:1<13::AID-CM2>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  21. Parsell D. A., Lindquist S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet. 1993;27:437–496. doi: 10.1146/annurev.ge.27.120193.002253. [DOI] [PubMed] [Google Scholar]
  22. Perret E., Moudjou M., Geraud M. L., Derancourt J., Soyer-Gobillard M. O., Bornens M. Identification of an HSP70-related protein associated with the centrosome from dinoflagellates to human cells. J Cell Sci. 1995 Feb;108(Pt 2):711–725. doi: 10.1242/jcs.108.2.711. [DOI] [PubMed] [Google Scholar]
  23. Rattner J. B. hsp70 is localized to the centrosome of dividing HeLa cells. Exp Cell Res. 1991 Jul;195(1):110–113. doi: 10.1016/0014-4827(91)90505-o. [DOI] [PubMed] [Google Scholar]
  24. Riabowol K. T., Mizzen L. A., Welch W. J. Heat shock is lethal to fibroblasts microinjected with antibodies against hsp70. Science. 1988 Oct 21;242(4877):433–436. doi: 10.1126/science.3175665. [DOI] [PubMed] [Google Scholar]
  25. Sconzo G., Amore G., Capra G., Giudice G., Cascino D., Ghersi G. Identification and characterization of a constitutive HSP75 in sea urchin embryos. Biochem Biophys Res Commun. 1997 May 8;234(1):24–29. doi: 10.1006/bbrc.1997.9996. [DOI] [PubMed] [Google Scholar]
  26. Sconzo G., Palla F., Agueli C., Spinelli G., Giudice G., Cascino D., Geraci F. Constitutive hsp70 is essential to mitosis during early cleavage of Paracentrotus lividus embryos: the blockage of constitutive hsp70 impairs mitosis. Biochem Biophys Res Commun. 1999 Jun 24;260(1):143–149. doi: 10.1006/bbrc.1999.0782. [DOI] [PubMed] [Google Scholar]
  27. Silver R. B., Cole R. D., Cande W. Z. Isolation of mitotic apparatus containing vesicles with calcium sequestration activity. Cell. 1980 Feb;19(2):505–516. doi: 10.1016/0092-8674(80)90525-5. [DOI] [PubMed] [Google Scholar]
  28. Thompson-Coffe C., Coffe G., Schatten H., Mazia D., Schatten G. Cold-treated centrosome: isolation of centrosomes from mitotic sea urchin eggs, production of an anticentrosomal antibody, and novel ultrastructural imaging. Cell Motil Cytoskeleton. 1996;33(3):197–207. doi: 10.1002/(SICI)1097-0169(1996)33:3<197::AID-CM4>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  29. Wigley W. C., Fabunmi R. P., Lee M. G., Marino C. R., Muallem S., DeMartino G. N., Thomas P. J. Dynamic association of proteasomal machinery with the centrosome. J Cell Biol. 1999 May 3;145(3):481–490. doi: 10.1083/jcb.145.3.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zhu D., Dix D. J., Eddy E. M. HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse spermatocytes. Development. 1997 Aug;124(15):3007–3014. doi: 10.1242/dev.124.15.3007. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES