Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Dec 1;360(Pt 2):421–429. doi: 10.1042/0264-6021:3600421

Localization of p24 putative cargo receptors in the early secretory pathway depends on the biosynthetic activity of the cell.

R P Kuiper 1, G Bouw 1, K P Janssen 1, J Rötter 1, F van Herp 1, G J Martens 1
PMCID: PMC1222243  PMID: 11716771

Abstract

Members of the p24 family of putative cargo receptors (subdivided into p24-alpha, -beta, -gamma and -delta) are localized in the intermediate-and cis-Golgi compartments of the early secretory pathway, and are thought to play an important role in protein transport. In the present study, we wondered what effect increased biosynthetic cell activity with resulting high levels of protein transport would have on the subcellular localization of p24. We examined p24 localization in Xenopus intermediate pituitary melanotrope cells, which in black- and white-adapted animals are biosynthetically highly active and virtually inactive respectively. In addition, p24 localization was studied in Xenopus anterior pituitary cells whose activity is not changed during background adaptation. Using organelle fractionation, we found that in the inactive melanotropes and moderately active anterior pituitary cells of white-adapted animals, the p24-alpha, -beta, -gamma and -delta proteins are all located in the Golgi compartment. In the highly active melanotropes, but not in the anterior cells of black-adapted animals, the steady-state distribution of all four p24 members changed towards the intermediate compartment and subdomains of the endoplasmic reticulum (ER), most probably the ER exit sites. In the active melanotropes, the major cargo protein pro-opiomelanocortin was mostly localized to ER subdomains and partially co-localized with the p24 proteins. Furthermore, in the active cells, in vitro blocking of protein biosynthesis by cycloheximide or dispersion of the Golgi complex by brefeldin A led to a redistribution of the p24 proteins, indicating their involvement in ER-to-Golgi protein transport and extensive cycling in the early secretory pathway. We conclude that the subcellular localization of p24 proteins is dynamic and depends on the biosynthetic activity of the cell.

Full Text

The Full Text of this article is available as a PDF (248.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balch W. E., McCaffery J. M., Plutner H., Farquhar M. G. Vesicular stomatitis virus glycoprotein is sorted and concentrated during export from the endoplasmic reticulum. Cell. 1994 Mar 11;76(5):841–852. doi: 10.1016/0092-8674(94)90359-x. [DOI] [PubMed] [Google Scholar]
  2. Bannykh S. I., Balch W. E. Membrane dynamics at the endoplasmic reticulum-Golgi interface. J Cell Biol. 1997 Jul 14;138(1):1–4. doi: 10.1083/jcb.138.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bannykh S. I., Rowe T., Balch W. E. The organization of endoplasmic reticulum export complexes. J Cell Biol. 1996 Oct;135(1):19–35. doi: 10.1083/jcb.135.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barlowe C., Orci L., Yeung T., Hosobuchi M., Hamamoto S., Salama N., Rexach M. F., Ravazzola M., Amherdt M., Schekman R. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell. 1994 Jun 17;77(6):895–907. doi: 10.1016/0092-8674(94)90138-4. [DOI] [PubMed] [Google Scholar]
  5. Belden W. J., Barlowe C. Erv25p, a component of COPII-coated vesicles, forms a complex with Emp24p that is required for efficient endoplasmic reticulum to Golgi transport. J Biol Chem. 1996 Oct 25;271(43):26939–26946. doi: 10.1074/jbc.271.43.26939. [DOI] [PubMed] [Google Scholar]
  6. Berghs C. A., Tanaka S., Van Strien F. J., Kurabuchi S., Roubos E. W. The secretory granule and pro-opiomelanocortin processing in Xenopus melanotrope cells during background adaptation. J Histochem Cytochem. 1997 Dec;45(12):1673–1682. doi: 10.1177/002215549704501211. [DOI] [PubMed] [Google Scholar]
  7. Blum R., Pfeiffer F., Feick P., Nastainczyk W., Kohler B., Schäfer K. H., Schulz I. Intracellular localization and in vivo trafficking of p24A and p23. J Cell Sci. 1999 Feb;112(Pt 4):537–548. doi: 10.1242/jcs.112.4.537. [DOI] [PubMed] [Google Scholar]
  8. Braks J. A., Van Horssen A. M., Martens G. J. Dissociation of the complex between the neuroendocrine chaperone 7B2 and prohormone convertase PC2 is not associated with proPC2 maturation. Eur J Biochem. 1996 Jun 1;238(2):505–510. doi: 10.1111/j.1432-1033.1996.0505z.x. [DOI] [PubMed] [Google Scholar]
  9. Ciufo L. F., Boyd A. Identification of a lumenal sequence specifying the assembly of Emp24p into p24 complexes in the yeast secretory pathway. J Biol Chem. 2000 Mar 24;275(12):8382–8388. doi: 10.1074/jbc.275.12.8382. [DOI] [PubMed] [Google Scholar]
  10. Denzel A., Otto F., Girod A., Pepperkok R., Watson R., Rosewell I., Bergeron J. J., Solari R. C., Owen M. J. The p24 family member p23 is required for early embryonic development. Curr Biol. 2000 Jan 13;10(1):55–58. doi: 10.1016/s0960-9822(99)00266-3. [DOI] [PubMed] [Google Scholar]
  11. Dominguez M., Dejgaard K., Füllekrug J., Dahan S., Fazel A., Paccaud J. P., Thomas D. Y., Bergeron J. J., Nilsson T. gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COP I and II coatomer. J Cell Biol. 1998 Feb 23;140(4):751–765. doi: 10.1083/jcb.140.4.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Elrod-Erickson M. J., Kaiser C. A. Genes that control the fidelity of endoplasmic reticulum to Golgi transport identified as suppressors of vesicle budding mutations. Mol Biol Cell. 1996 Jul;7(7):1043–1058. doi: 10.1091/mbc.7.7.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Emery G., Rojo M., Gruenberg J. Coupled transport of p24 family members. J Cell Sci. 2000 Jul;113(Pt 13):2507–2516. doi: 10.1242/jcs.113.13.2507. [DOI] [PubMed] [Google Scholar]
  14. Füllekrug J., Suganuma T., Tang B. L., Hong W., Storrie B., Nilsson T. Localization and recycling of gp27 (hp24gamma3): complex formation with other p24 family members. Mol Biol Cell. 1999 Jun;10(6):1939–1955. doi: 10.1091/mbc.10.6.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Füllekrug J., Sönnichsen B., Schäfer U., Nguyen Van P., Söling H. D., Mieskes G. Characterization of brefeldin A induced vesicular structures containing cycling proteins of the intermediate compartment/cis-Golgi network. FEBS Lett. 1997 Mar 3;404(1):75–81. doi: 10.1016/s0014-5793(97)00097-5. [DOI] [PubMed] [Google Scholar]
  16. Gerich B., Orci L., Tschochner H., Lottspeich F., Ravazzola M., Amherdt M., Wieland F., Harter C. Non-clathrin-coat protein alpha is a conserved subunit of coatomer and in Saccharomyces cerevisiae is essential for growth. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3229–3233. doi: 10.1073/pnas.92.8.3229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goldberg J. Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex. Cell. 2000 Mar 17;100(6):671–679. doi: 10.1016/s0092-8674(00)80703-5. [DOI] [PubMed] [Google Scholar]
  18. Gommel D., Orci L., Emig E. M., Hannah M. J., Ravazzola M., Nickel W., Helms J. B., Wieland F. T., Sohn K. p24 and p23, the major transmembrane proteins of COPI-coated transport vesicles, form hetero-oligomeric complexes and cycle between the organelles of the early secretory pathway. FEBS Lett. 1999 Mar 26;447(2-3):179–185. doi: 10.1016/s0014-5793(99)00246-x. [DOI] [PubMed] [Google Scholar]
  19. Hauri H. P., Kappeler F., Andersson H., Appenzeller C. ERGIC-53 and traffic in the secretory pathway. J Cell Sci. 2000 Feb;113(Pt 4):587–596. doi: 10.1242/jcs.113.4.587. [DOI] [PubMed] [Google Scholar]
  20. Hauri H. P., Schweizer A. The endoplasmic reticulum-Golgi intermediate compartment. Curr Opin Cell Biol. 1992 Aug;4(4):600–608. doi: 10.1016/0955-0674(92)90078-Q. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Holthuis J. C., Jansen E. J., Martens G. J. Secretogranin III is a sulfated protein undergoing proteolytic processing in the regulated secretory pathway. J Biol Chem. 1996 Jul 26;271(30):17755–17760. doi: 10.1074/jbc.271.30.17755. [DOI] [PubMed] [Google Scholar]
  22. Holthuis J. C., Jansen E. J., van Riel M. C., Martens G. J. Molecular probing of the secretory pathway in peptide hormone-producing cells. J Cell Sci. 1995 Oct;108(Pt 10):3295–3305. doi: 10.1242/jcs.108.10.3295. [DOI] [PubMed] [Google Scholar]
  23. Holthuis J. C., van Riel M. C., Martens G. J. Translocon-associated protein TRAP delta and a novel TRAP-like protein are coordinately expressed with pro-opiomelanocortin in Xenopus intermediate pituitary. Biochem J. 1995 Nov 15;312(Pt 1):205–213. doi: 10.1042/bj3120205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. John D. C., Grant M. E., Bulleid N. J. Cell-free synthesis and assembly of prolyl 4-hydroxylase: the role of the beta-subunit (PDI) in preventing misfolding and aggregation of the alpha-subunit. EMBO J. 1993 Apr;12(4):1587–1595. doi: 10.1002/j.1460-2075.1993.tb05803.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kaiser C. Thinking about p24 proteins and how transport vesicles select their cargo. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):3783–3785. doi: 10.1073/pnas.97.8.3783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  27. Kuehn M. J., Herrmann J. M., Schekman R. COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. Nature. 1998 Jan 8;391(6663):187–190. doi: 10.1038/34438. [DOI] [PubMed] [Google Scholar]
  28. Kuiper R. P., Waterham H. R., Rötter J., Bouw G., Martens G. J. Differential induction of two p24delta putative cargo receptors upon activation of a prohormone-producing cell. Mol Biol Cell. 2000 Jan;11(1):131–140. doi: 10.1091/mbc.11.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lavoie C., Paiement J., Dominguez M., Roy L., Dahan S., Gushue J. N., Bergeron J. J. Roles for alpha(2)p24 and COPI in endoplasmic reticulum cargo exit site formation. J Cell Biol. 1999 Jul 26;146(2):285–299. doi: 10.1083/jcb.146.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lin C. C., Love H. D., Gushue J. N., Bergeron J. J., Ostermann J. ER/Golgi intermediates acquire Golgi enzymes by brefeldin A-sensitive retrograde transport in vitro. J Cell Biol. 1999 Dec 27;147(7):1457–1472. doi: 10.1083/jcb.147.7.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lippincott-Schwartz J., Yuan L. C., Bonifacino J. S., Klausner R. D. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell. 1989 Mar 10;56(5):801–813. doi: 10.1016/0092-8674(89)90685-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Marzioch M., Henthorn D. C., Herrmann J. M., Wilson R., Thomas D. Y., Bergeron J. J., Solari R. C., Rowley A. Erp1p and Erp2p, partners for Emp24p and Erv25p in a yeast p24 complex. Mol Biol Cell. 1999 Jun;10(6):1923–1938. doi: 10.1091/mbc.10.6.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mizuno M., Singer S. J. A soluble secretory protein is first concentrated in the endoplasmic reticulum before transfer to the Golgi apparatus. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5732–5736. doi: 10.1073/pnas.90.12.5732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Muñiz M., Nuoffer C., Hauri H. P., Riezman H. The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derived vesicles. J Cell Biol. 2000 Mar 6;148(5):925–930. doi: 10.1083/jcb.148.5.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nickel W., Wieland F. T. Biogenesis of COPI-coated transport vesicles. FEBS Lett. 1997 Aug 25;413(3):395–400. doi: 10.1016/s0014-5793(97)00939-3. [DOI] [PubMed] [Google Scholar]
  36. Orci L., Tagaya M., Amherdt M., Perrelet A., Donaldson J. G., Lippincott-Schwartz J., Klausner R. D., Rothman J. E. Brefeldin A, a drug that blocks secretion, prevents the assembly of non-clathrin-coated buds on Golgi cisternae. Cell. 1991 Mar 22;64(6):1183–1195. doi: 10.1016/0092-8674(91)90273-2. [DOI] [PubMed] [Google Scholar]
  37. Proceedings of the 64th annual meeting of the Zoological Society of Japan. Okinawa, November 20-23, 1993. Abstracts. Zoolog Sci. 1993 Nov;10 (Suppl):1–200. [PubMed] [Google Scholar]
  38. Rojo M., Emery G., Marjomäki V., McDowall A. W., Parton R. G., Gruenberg J. The transmembrane protein p23 contributes to the organization of the Golgi apparatus. J Cell Sci. 2000 Mar;113(Pt 6):1043–1057. doi: 10.1242/jcs.113.6.1043. [DOI] [PubMed] [Google Scholar]
  39. Rojo M., Pepperkok R., Emery G., Kellner R., Stang E., Parton R. G., Gruenberg J. Involvement of the transmembrane protein p23 in biosynthetic protein transport. J Cell Biol. 1997 Dec 1;139(5):1119–1135. doi: 10.1083/jcb.139.5.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rothman J. E., Wieland F. T. Protein sorting by transport vesicles. Science. 1996 Apr 12;272(5259):227–234. doi: 10.1126/science.272.5259.227. [DOI] [PubMed] [Google Scholar]
  41. Saraste J., Svensson K. Distribution of the intermediate elements operating in ER to Golgi transport. J Cell Sci. 1991 Nov;100(Pt 3):415–430. doi: 10.1242/jcs.100.3.415. [DOI] [PubMed] [Google Scholar]
  42. Scales S. J., Pepperkok R., Kreis T. E. Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell. 1997 Sep 19;90(6):1137–1148. doi: 10.1016/s0092-8674(00)80379-7. [DOI] [PubMed] [Google Scholar]
  43. Schekman R., Orci L. Coat proteins and vesicle budding. Science. 1996 Mar 15;271(5255):1526–1533. doi: 10.1126/science.271.5255.1526. [DOI] [PubMed] [Google Scholar]
  44. Schimmöller F., Singer-Krüger B., Schröder S., Krüger U., Barlowe C., Riezman H. The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi. EMBO J. 1995 Apr 3;14(7):1329–1339. doi: 10.1002/j.1460-2075.1995.tb07119.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Schweizer A., Fransen J. A., Matter K., Kreis T. E., Ginsel L., Hauri H. P. Identification of an intermediate compartment involved in protein transport from endoplasmic reticulum to Golgi apparatus. Eur J Cell Biol. 1990 Dec;53(2):185–196. [PubMed] [Google Scholar]
  46. Sitia R., Meldolesi J. Endoplasmic reticulum: a dynamic patchwork of specialized subregions. Mol Biol Cell. 1992 Oct;3(10):1067–1072. doi: 10.1091/mbc.3.10.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sohn K., Orci L., Ravazzola M., Amherdt M., Bremser M., Lottspeich F., Fiedler K., Helms J. B., Wieland F. T. A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding. J Cell Biol. 1996 Dec;135(5):1239–1248. doi: 10.1083/jcb.135.5.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Springer S., Chen E., Duden R., Marzioch M., Rowley A., Hamamoto S., Merchant S., Schekman R. The p24 proteins are not essential for vesicular transport in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4034–4039. doi: 10.1073/pnas.070044097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Storrie B., Madden E. A. Isolation of subcellular organelles. Methods Enzymol. 1990;182:203–225. doi: 10.1016/0076-6879(90)82018-w. [DOI] [PubMed] [Google Scholar]
  50. Wen C., Greenwald I. p24 proteins and quality control of LIN-12 and GLP-1 trafficking in Caenorhabditis elegans. J Cell Biol. 1999 Jun 14;145(6):1165–1175. doi: 10.1083/jcb.145.6.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. de Rijk E. P., Jenks B. G., Wendelaar Bonga S. E. Morphology of the pars intermedia and the melanophore-stimulating cells in Xenopus laevis in relation to background adaptation. Gen Comp Endocrinol. 1990 Jul;79(1):74–82. doi: 10.1016/0016-6480(90)90089-5. [DOI] [PubMed] [Google Scholar]
  52. van Eys G. J., van den Oetelaar P. Cytological localization of alpha-MSH, ACTH and beta-endorphin in the pars intermedia of the cichlid teleost Sarotherodon mossambicus. Cell Tissue Res. 1981;215(3):625–633. doi: 10.1007/BF00233536. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES