Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Dec 1;360(Pt 2):449–459. doi: 10.1042/0264-6021:3600449

The level of the glycogen targetting regulatory subunit R5 of protein phosphatase 1 is decreased in the livers of insulin-dependent diabetic rats and starved rats.

G J Browne 1, M Delibegovic 1, S Keppens 1, W Stalmans 1, P T Cohen 1
PMCID: PMC1222246  PMID: 11716774

Abstract

Hepatic glycogen synthesis is impaired in insulin-dependent diabetic rats owing to defective activation of glycogen synthase by glycogen-bound protein phosphatase 1 (PP1). The identification of three glycogen-targetting subunits in liver, G(L), R5/PTG and R6, which form complexes with the catalytic subunit of PP1 (PP1c), raises the question of whether some or all of these PP1c complexes are subject to regulation by insulin. In liver lysates of control rats, R5 and R6 complexes with PP1c were found to contribute significantly (16 and 21% respectively) to the phosphorylase phosphatase activity associated with the glycogen-targetting subunits, G(L)-PP1c accounting for the remainder (63%). In liver lysates of insulin-dependent diabetic and of starved rats, the phosphorylase phosphatase activities of the R5 and G(L) complexes with PP1c were shown by specific immunoadsorption assays to be substantially decreased, and the levels of R5 and G(L) were shown by immunoblotting to be much lower than those in control extracts. The phosphorylase phosphatase activity of R6-PP1c and the concentration of R6 protein were unaffected by these treatments. Insulin administration to diabetic rats restored the levels of R5 and G(L) and their associated activities. The regulation of R5 protein levels by insulin was shown to correspond to changes in the level of the mRNA, as has been found for G(L). The in vitro glycogen synthase phosphatase/phosphorylase phosphatase activity ratio of R5-PP1c was lower than that of G(L)-PP1c, suggesting that R5-PP1c may function as a hepatic phosphorylase phosphatase, whereas G(L)-PP1c may be the major hepatic glycogen synthase phosphatase. In hepatic lysates, more than half the R6 was present in the glycogen-free supernatant, suggesting that R6 may have lower affinity for glycogen than R5 and G(L)

Full Text

The Full Text of this article is available as a PDF (308.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alemany S., Cohen P. Phosphorylase a is an allosteric inhibitor of the glycogen and microsomal forms of rat hepatic protein phosphatase-1. FEBS Lett. 1986 Mar 31;198(2):194–202. doi: 10.1016/0014-5793(86)80404-5. [DOI] [PubMed] [Google Scholar]
  2. Alemany S., Pelech S., Brierley C. H., Cohen P. The protein phosphatases involved in cellular regulation. Evidence that dephosphorylation of glycogen phosphorylase and glycogen synthase in the glycogen and microsomal fractions of rat liver are catalysed by the same enzyme: protein phosphatase-1. Eur J Biochem. 1986 Apr 1;156(1):101–110. doi: 10.1111/j.1432-1033.1986.tb09554.x. [DOI] [PubMed] [Google Scholar]
  3. Armstrong C. G., Browne G. J., Cohen P., Cohen P. T. PPP1R6, a novel member of the family of glycogen-targetting subunits of protein phosphatase 1. FEBS Lett. 1997 Nov 24;418(1-2):210–214. doi: 10.1016/s0014-5793(97)01385-9. [DOI] [PubMed] [Google Scholar]
  4. Armstrong C. G., Doherty M. J., Cohen P. T. Identification of the separate domains in the hepatic glycogen-targeting subunit of protein phosphatase 1 that interact with phosphorylase a, glycogen and protein phosphatase 1. Biochem J. 1998 Dec 15;336(Pt 3):699–704. doi: 10.1042/bj3360699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berman H. K., O'Doherty R. M., Anderson P., Newgard C. B. Overexpression of protein targeting to glycogen (PTG) in rat hepatocytes causes profound activation of glycogen synthesis independent of normal hormone- and substrate-mediated regulatory mechanisms. J Biol Chem. 1998 Oct 9;273(41):26421–26425. doi: 10.1074/jbc.273.41.26421. [DOI] [PubMed] [Google Scholar]
  6. Bollen M., Keppens S., Stalmans W. Differences in liver glycogen-synthase phosphatase activity in rodents with spontaneous insulin-dependent and non-insulin-dependent diabetes. Diabetologia. 1988 Sep;31(9):711–713. doi: 10.1007/BF00278757. [DOI] [PubMed] [Google Scholar]
  7. Bollen M., Keppens S., Stalmans W. Specific features of glycogen metabolism in the liver. Biochem J. 1998 Nov 15;336(Pt 1):19–31. doi: 10.1042/bj3360019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bollen M., Stalmans W. The hepatic defect in glycogen synthesis in chronic diabetes involves the G-component of synthase phosphatase. Biochem J. 1984 Jan 15;217(2):427–434. doi: 10.1042/bj2170427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bollen M., Stalmans W. The structure, role, and regulation of type 1 protein phosphatases. Crit Rev Biochem Mol Biol. 1992;27(3):227–281. doi: 10.3109/10409239209082564. [DOI] [PubMed] [Google Scholar]
  10. Brady M. J., Printen J. A., Mastick C. C., Saltiel A. R. Role of protein targeting to glycogen (PTG) in the regulation of protein phosphatase-1 activity. J Biol Chem. 1997 Aug 8;272(32):20198–20204. doi: 10.1074/jbc.272.32.20198. [DOI] [PubMed] [Google Scholar]
  11. Chen Y. H., Hansen L., Chen M. X., Bjørbaek C., Vestergaard H., Hansen T., Cohen P. T., Pedersen O. Sequence of the human glycogen-associated regulatory subunit of type 1 protein phosphatase and analysis of its coding region and mRNA level in muscle from patients with NIDDM. Diabetes. 1994 Oct;43(10):1234–1241. doi: 10.2337/diabetes.43.10.1234. [DOI] [PubMed] [Google Scholar]
  12. Cohen P., Alemany S., Hemmings B. A., Resink T. J., Strålfors P., Tung H. Y. Protein phosphatase-1 and protein phosphatase-2A from rabbit skeletal muscle. Methods Enzymol. 1988;159:390–408. doi: 10.1016/0076-6879(88)59039-0. [DOI] [PubMed] [Google Scholar]
  13. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
  14. Davies S. P., Reddy H., Caivano M., Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000 Oct 1;351(Pt 1):95–105. doi: 10.1042/0264-6021:3510095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Doherty M. J., Cadefau J., Stalmans W., Bollen M., Cohen P. T. Loss of the hepatic glycogen-binding subunit (GL) of protein phosphatase 1 underlies deficient glycogen synthesis in insulin-dependent diabetic rats and in adrenalectomized starved rats. Biochem J. 1998 Jul 15;333(Pt 2):253–257. doi: 10.1042/bj3330253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Doherty M. J., Moorhead G., Morrice N., Cohen P., Cohen P. T. Amino acid sequence and expression of the hepatic glycogen-binding (GL)-subunit of protein phosphatase-1. FEBS Lett. 1995 Nov 20;375(3):294–298. doi: 10.1016/0014-5793(95)01184-g. [DOI] [PubMed] [Google Scholar]
  17. Doherty M. J., Young P. R., Cohen P. T. Amino acid sequence of a novel protein phosphatase 1 binding protein (R5) which is related to the liver- and muscle-specific glycogen binding subunits of protein phosphatase 1. FEBS Lett. 1996 Dec 16;399(3):339–343. doi: 10.1016/s0014-5793(96)01357-9. [DOI] [PubMed] [Google Scholar]
  18. Egloff M. P., Johnson D. F., Moorhead G., Cohen P. T., Cohen P., Barford D. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 1997 Apr 15;16(8):1876–1887. doi: 10.1093/emboj/16.8.1876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fong N. M., Jensen T. C., Shah A. S., Parekh N. N., Saltiel A. R., Brady M. J. Identification of binding sites on protein targeting to glycogen for enzymes of glycogen metabolism. J Biol Chem. 2000 Nov 10;275(45):35034–35039. doi: 10.1074/jbc.M005541200. [DOI] [PubMed] [Google Scholar]
  20. Gasa R., Jensen P. B., Berman H. K., Brady M. J., DePaoli-Roach A. A., Newgard C. B. Distinctive regulatory and metabolic properties of glycogen-targeting subunits of protein phosphatase-1 (PTG, GL, GM/RGl) expressed in hepatocytes. J Biol Chem. 2000 Aug 25;275(34):26396–26403. doi: 10.1074/jbc.M002427200. [DOI] [PubMed] [Google Scholar]
  21. Helps N. R., Cohen P. T. Drosophila melanogaster protein phosphatase inhibitor-2: identification of a site important for PP1 inhibition. FEBS Lett. 1999 Dec 10;463(1-2):72–76. doi: 10.1016/s0014-5793(99)01573-2. [DOI] [PubMed] [Google Scholar]
  22. Helps N. R., Luo X., Barker H. M., Cohen P. T. NIMA-related kinase 2 (Nek2), a cell-cycle-regulated protein kinase localized to centrosomes, is complexed to protein phosphatase 1. Biochem J. 2000 Jul 15;349(Pt 2):509–518. doi: 10.1042/0264-6021:3490509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hirano K., Hirano M., Hartshorne D. J. Cloning and characterization of a protein phosphatase type 1-binding subunit from smooth muscle similar to the glycogen-binding subunit of liver. Biochim Biophys Acta. 1997 May 23;1339(2):177–180. doi: 10.1016/s0167-4838(97)00048-4. [DOI] [PubMed] [Google Scholar]
  24. Hubbard M. J., Cohen P. On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci. 1993 May;18(5):172–177. doi: 10.1016/0968-0004(93)90109-z. [DOI] [PubMed] [Google Scholar]
  25. Hubbard M. J., Cohen P. Regulation of protein phosphatase-1G from rabbit skeletal muscle. 2. Catalytic subunit translocation is a mechanism for reversible inhibition of activity toward glycogen-bound substrates. Eur J Biochem. 1989 Dec 22;186(3):711–716. doi: 10.1111/j.1432-1033.1989.tb15264.x. [DOI] [PubMed] [Google Scholar]
  26. Johnson D. F., Moorhead G., Caudwell F. B., Cohen P., Chen Y. H., Chen M. X., Cohen P. T. Identification of protein-phosphatase-1-binding domains on the glycogen and myofibrillar targetting subunits. Eur J Biochem. 1996 Jul 15;239(2):317–325. doi: 10.1111/j.1432-1033.1996.0317u.x. [DOI] [PubMed] [Google Scholar]
  27. Liu J., Brautigan D. L. Glycogen synthase association with the striated muscle glycogen-targeting subunit of protein phosphatase-1. Synthase activation involves scaffolding regulated by beta-adrenergic signaling. J Biol Chem. 2000 Aug 25;275(34):26074–26081. doi: 10.1074/jbc.M003843200. [DOI] [PubMed] [Google Scholar]
  28. Miller T. B., Jr, Garnache A., Cruz J. Insulin regulation of glycogen synthase phosphatase in primary cultures of hepatocytes. J Biol Chem. 1984 Oct 25;259(20):12470–12474. [PubMed] [Google Scholar]
  29. Moorhead G., MacKintosh C., Morrice N., Cohen P. Purification of the hepatic glycogen-associated form of protein phosphatase-1 by microcystin-Sepharose affinity chromatography. FEBS Lett. 1995 Apr 3;362(2):101–105. doi: 10.1016/0014-5793(95)00197-h. [DOI] [PubMed] [Google Scholar]
  30. Mvumbi L., Doperé F., Stalmans W. The inhibitory effect of phosphorylase a on the activation of glycogen synthase depends on the type of synthase phosphatase. Biochem J. 1983 May 15;212(2):407–416. doi: 10.1042/bj2120407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mvumbi L., Stalmans W. High-affinity binding of glycogen-synthase phosphatase to glycogen particles in the liver. Role of glycogen in the inhibition of synthase phosphatase by phosphorylase a. Biochem J. 1987 Sep 1;246(2):367–374. doi: 10.1042/bj2460367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nimmo H. G., Proud C. G., Cohen P. The purification and properties of rabbit skeletal muscle glycogen synthase. Eur J Biochem. 1976 Sep;68(1):21–30. doi: 10.1111/j.1432-1033.1976.tb10761.x. [DOI] [PubMed] [Google Scholar]
  33. O'Doherty R. M., Jensen P. B., Anderson P., Jones J. G., Berman H. K., Kearney D., Newgard C. B. Activation of direct and indirect pathways of glycogen synthesis by hepatic overexpression of protein targeting to glycogen. J Clin Invest. 2000 Feb;105(4):479–488. doi: 10.1172/JCI8673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Printen J. A., Brady M. J., Saltiel A. R. PTG, a protein phosphatase 1-binding protein with a role in glycogen metabolism. Science. 1997 Mar 7;275(5305):1475–1478. doi: 10.1126/science.275.5305.1475. [DOI] [PubMed] [Google Scholar]
  35. Schelling D., Leader D. P., Zammit V. A., Cohen P. Distinct type-1 protein phosphatases are associated with hepatic glycogen and microsomes. Biochim Biophys Acta. 1988 Nov 18;972(2):221–231. doi: 10.1016/0167-4889(88)90120-6. [DOI] [PubMed] [Google Scholar]
  36. Stewart A. A., Hemmings B. A., Cohen P., Goris J., Merlevede W. The MgATP-dependent protein phosphatase and protein phosphatase 1 have identical substrate specificities. Eur J Biochem. 1981 Mar 16;115(1):197–205. doi: 10.1111/j.1432-1033.1981.tb06217.x. [DOI] [PubMed] [Google Scholar]
  37. Strålfors P., Hiraga A., Cohen P. The protein phosphatases involved in cellular regulation. Purification and characterisation of the glycogen-bound form of protein phosphatase-1 from rabbit skeletal muscle. Eur J Biochem. 1985 Jun 3;149(2):295–303. doi: 10.1111/j.1432-1033.1985.tb08926.x. [DOI] [PubMed] [Google Scholar]
  38. Suzuki Y., Lanner C., Kim J. H., Vilardo P. G., Zhang H., Yang J., Cooper L. D., Steele M., Kennedy A., Bock C. B. Insulin control of glycogen metabolism in knockout mice lacking the muscle-specific protein phosphatase PP1G/RGL. Mol Cell Biol. 2001 Apr;21(8):2683–2694. doi: 10.1128/MCB.21.8.2683-2694.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tan A. W., Nuttall F. Q. Regulation of synthase phosphatase and phosphorylase phosphatase in rat liver. Biochim Biophys Acta. 1976 Aug 12;445(1):118–130. doi: 10.1016/0005-2744(76)90165-0. [DOI] [PubMed] [Google Scholar]
  40. Tang P. M., Bondor J. A., Swiderek K. M., DePaoli-Roach A. A. Molecular cloning and expression of the regulatory (RG1) subunit of the glycogen-associated protein phosphatase. J Biol Chem. 1991 Aug 25;266(24):15782–15789. [PubMed] [Google Scholar]
  41. Walker K. S., Watt P. W., Cohen P. Phosphorylation of the skeletal muscle glycogen-targetting subunit of protein phosphatase 1 in response to adrenaline in vivo. FEBS Lett. 2000 Jan 21;466(1):121–124. doi: 10.1016/s0014-5793(99)01771-8. [DOI] [PubMed] [Google Scholar]
  42. Wu J., Liu J., Thompson I., Oliver C. J., Shenolikar S., Brautigan D. L. A conserved domain for glycogen binding in protein phosphatase-1 targeting subunits. FEBS Lett. 1998 Nov 13;439(1-2):185–191. doi: 10.1016/s0014-5793(98)01371-4. [DOI] [PubMed] [Google Scholar]
  43. Yamamoto-Honda R., Honda Z., Kaburagi Y., Ueki K., Kimura S., Akanuma Y., Kadowaki T. Overexpression of the glycogen targeting (G(M)) subunit of protein phosphatase-1. Biochem Biophys Res Commun. 2000 Sep 7;275(3):859–864. doi: 10.1006/bbrc.2000.3391. [DOI] [PubMed] [Google Scholar]
  44. Zhao S., Lee E. Y. Targeting of the catalytic subunit of protein phosphatase-1 to the glycolytic enzyme phosphofructokinase. Biochemistry. 1997 Jul 8;36(27):8318–8324. doi: 10.1021/bi962814r. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES