Abstract
During ex vivo growth as monolayer cultures, chondrocytes proliferate and undergo a process of de-differentiation. This process involves a change in morphology and a change from expression of chondrocyte-specific genes to that of genes that are normally expressed in fibroblasts. Transfer of the monolayer chondrocyte culture to three-dimensional culture systems induces the cells to re-acquire a chondrocyte-specific phenotype and produce a cartilaginous-like tissue in vitro. We investigated mechanisms involved in the control of the de-differentiation and re-differentiation process in vitro. De-differentiated chondrocytes re-acquired their chondrocyte-specific phenotype when cultured on poly-(2-hydroxyethyl methacrylate) (polyHEMA) as assayed by morphology, reverse transcriptase PCR of chondrocyte-specific mRNA, Western-blot analysis and chondrocyte-specific promoter activity. Essentially, full recovery of the chondrocyte-specific phenotype was observed when cells that had been cultured for 4 weeks on plastic were transferred to culture on polyHEMA. However, after subsequent passages on plastic, the phenotype recovery was incomplete or did not occur. The activity of a gene reporter construct containing the promoter and enhancer from the human type-II collagen gene (COL2A1) was modulated by the culture conditions, so that its transcriptional activity was repressed in monolayer cultures and rescued to some extent when the cells were switched to polyHEMA cultures. The binding of Sry-type high-mobility-group box (SOX) transcription factors to the enhancer region was modulated by the culture conditions, as were the mRNA levels for SOX9. A transfected human type-II collagen reporter construct was activated in de-differentiated cells by ectopic expression of SOX transcription factors. These results underscore the overt change in phenotype that occurs when chondrocytes are cultured as monolayers on tissue-culture plastic substrata.
Full Text
The Full Text of this article is available as a PDF (301.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams S. L., Boettiger D., Focht R. J., Holtzer H., Pacifici M. Regulation of the synthesis of extracellular matrix components in chondroblasts transformed by a temperature-sensitive mutant of Rous sarcoma virus. Cell. 1982 Sep;30(2):373–384. doi: 10.1016/0092-8674(82)90235-5. [DOI] [PubMed] [Google Scholar]
- Aulthouse A. L., Beck M., Griffey E., Sanford J., Arden K., Machado M. A., Horton W. A. Expression of the human chondrocyte phenotype in vitro. In Vitro Cell Dev Biol. 1989 Jul;25(7):659–668. doi: 10.1007/BF02623638. [DOI] [PubMed] [Google Scholar]
- Bell D. M., Leung K. K., Wheatley S. C., Ng L. J., Zhou S., Ling K. W., Sham M. H., Koopman P., Tam P. P., Cheah K. S. SOX9 directly regulates the type-II collagen gene. Nat Genet. 1997 Jun;16(2):174–178. doi: 10.1038/ng0697-174. [DOI] [PubMed] [Google Scholar]
- Benya P. D., Nimni M. E. The stability of the collagen phenotype during stimulated collagen, glycosaminoglycan, and DNA synthesis by articular cartilage organ cultures. Arch Biochem Biophys. 1979 Feb;192(2):327–335. doi: 10.1016/0003-9861(79)90100-0. [DOI] [PubMed] [Google Scholar]
- Benya P. D., Padilla S. R., Nimni M. E. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell. 1978 Dec;15(4):1313–1321. doi: 10.1016/0092-8674(78)90056-9. [DOI] [PubMed] [Google Scholar]
- Bi W., Deng J. M., Zhang Z., Behringer R. R., de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet. 1999 May;22(1):85–89. doi: 10.1038/8792. [DOI] [PubMed] [Google Scholar]
- Bonaventure J., Kadhom N., Cohen-Solal L., Ng K. H., Bourguignon J., Lasselin C., Freisinger P. Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp Cell Res. 1994 May;212(1):97–104. doi: 10.1006/excr.1994.1123. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brittberg M., Lindahl A., Nilsson A., Ohlsson C., Isaksson O., Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994 Oct 6;331(14):889–895. doi: 10.1056/NEJM199410063311401. [DOI] [PubMed] [Google Scholar]
- Chen S. J., Artlett C. M., Jimenez S. A., Varga J. Modulation of human alpha1(I) procollagen gene activity by interaction with Sp1 and Sp3 transcription factors in vitro. Gene. 1998 Jul 17;215(1):101–110. doi: 10.1016/s0378-1119(98)00268-6. [DOI] [PubMed] [Google Scholar]
- Dharmavaram R. M., Liu G., Mowers S. D., Jimenez S. A. Detection and characterization of Sp1 binding activity in human chondrocytes and its alterations during chondrocyte dedifferentiation. J Biol Chem. 1997 Oct 24;272(43):26918–26925. doi: 10.1074/jbc.272.43.26918. [DOI] [PubMed] [Google Scholar]
- Elima K., Vuorio E. Expression of mRNAs for collagens and other matrix components in dedifferentiating and redifferentiating human chondrocytes in culture. FEBS Lett. 1989 Dec 4;258(2):195–198. doi: 10.1016/0014-5793(89)81651-5. [DOI] [PubMed] [Google Scholar]
- Foster J. W., Dominguez-Steglich M. A., Guioli S., Kwok C., Weller P. A., Stevanović M., Weissenbach J., Mansour S., Young I. D., Goodfellow P. N. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature. 1994 Dec 8;372(6506):525–530. doi: 10.1038/372525a0. [DOI] [PubMed] [Google Scholar]
- Freed L. E., Marquis J. C., Nohria A., Emmanual J., Mikos A. G., Langer R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res. 1993 Jan;27(1):11–23. doi: 10.1002/jbm.820270104. [DOI] [PubMed] [Google Scholar]
- Freed L. E., Vunjak-Novakovic G., Biron R. J., Eagles D. B., Lesnoy D. C., Barlow S. K., Langer R. Biodegradable polymer scaffolds for tissue engineering. Biotechnology (N Y) 1994 Jul;12(7):689–693. doi: 10.1038/nbt0794-689. [DOI] [PubMed] [Google Scholar]
- Freed L. E., Vunjak-Novakovic G., Langer R. Cultivation of cell-polymer cartilage implants in bioreactors. J Cell Biochem. 1993 Mar;51(3):257–264. doi: 10.1002/jcb.240510304. [DOI] [PubMed] [Google Scholar]
- Ghayor C., Herrouin J. F., Chadjichristos C., Ala-Kokko L., Takigawa M., Pujol J. P., Galéra P. Regulation of human COL2A1 gene expression in chondrocytes. Identification of C-Krox-responsive elements and modulation by phenotype alteration. J Biol Chem. 2000 Sep 1;275(35):27421–27438. doi: 10.1074/jbc.M002139200. [DOI] [PubMed] [Google Scholar]
- Goldring M. B., Fukuo K., Birkhead J. R., Dudek E., Sandell L. J. Transcriptional suppression by interleukin-1 and interferon-gamma of type II collagen gene expression in human chondrocytes. J Cell Biochem. 1994 Jan;54(1):85–99. doi: 10.1002/jcb.240540110. [DOI] [PubMed] [Google Scholar]
- Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo J. F., Jourdian G. W., MacCallum D. K. Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect Tissue Res. 1989;19(2-4):277–297. doi: 10.3109/03008208909043901. [DOI] [PubMed] [Google Scholar]
- Holtzer H., Abbott J., Lash J., Holtzer S. THE LOSS OF PHENOTYPIC TRAITS BY DIFFERENTIATED CELLS IN VITRO, I. DEDIFFERENTIATION OF CARTILAGE CELLS. Proc Natl Acad Sci U S A. 1960 Dec;46(12):1533–1542. doi: 10.1073/pnas.46.12.1533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Häuselmann H. J., Aydelotte M. B., Schumacher B. L., Kuettner K. E., Gitelis S. H., Thonar E. J. Synthesis and turnover of proteoglycans by human and bovine adult articular chondrocytes cultured in alginate beads. Matrix. 1992 Apr;12(2):116–129. doi: 10.1016/s0934-8832(11)80053-3. [DOI] [PubMed] [Google Scholar]
- Häuselmann H. J., Fernandes R. J., Mok S. S., Schmid T. M., Block J. A., Aydelotte M. B., Kuettner K. E., Thonar E. J. Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci. 1994 Jan;107(Pt 1):17–27. doi: 10.1242/jcs.107.1.17. [DOI] [PubMed] [Google Scholar]
- Jimenez S. A., Ala-Kokko L., Prockop D. J., Merryman C. F., Shepard N., Dodge G. R. Characterization of human type II procollagen and collagen-specific antibodies and their application to the study of human type II collagen processing and ultrastructure. Matrix Biol. 1997 Apr;16(1):29–39. doi: 10.1016/s0945-053x(97)90114-1. [DOI] [PubMed] [Google Scholar]
- Kjellén L., Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem. 1991;60:443–475. doi: 10.1146/annurev.bi.60.070191.002303. [DOI] [PubMed] [Google Scholar]
- Kosher R. A., Solursh M. Widespread distribution of type II collagen during embryonic chick development. Dev Biol. 1989 Feb;131(2):558–566. doi: 10.1016/s0012-1606(89)80026-0. [DOI] [PubMed] [Google Scholar]
- Kuettner K. E., Memoli V. A., Pauli B. U., Wrobel N. C., Thonar E. J., Daniel J. C. Synthesis of cartilage matrix by mammalian chondrocytes in vitro. II. Maintenance of collagen and proteoglycan phenotype. J Cell Biol. 1982 Jun;93(3):751–757. doi: 10.1083/jcb.93.3.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lefebvre V., Huang W., Harley V. R., Goodfellow P. N., de Crombrugghe B. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol. 1997 Apr;17(4):2336–2346. doi: 10.1128/mcb.17.4.2336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lefebvre V., Li P., de Crombrugghe B. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J. 1998 Oct 1;17(19):5718–5733. doi: 10.1093/emboj/17.19.5718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lefebvre V., Zhou G., Mukhopadhyay K., Smith C. N., Zhang Z., Eberspaecher H., Zhou X., Sinha S., Maity S. N., de Crombrugghe B. An 18-base-pair sequence in the mouse proalpha1(II) collagen gene is sufficient for expression in cartilage and binds nuclear proteins that are selectively expressed in chondrocytes. Mol Cell Biol. 1996 Aug;16(8):4512–4523. doi: 10.1128/mcb.16.8.4512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leung K. K., Ng L. J., Ho K. K., Tam P. P., Cheah K. S. Different cis-regulatory DNA elements mediate developmental stage- and tissue-specific expression of the human COL2A1 gene in transgenic mice. J Cell Biol. 1998 Jun 15;141(6):1291–1300. doi: 10.1083/jcb.141.6.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li L., Artlett C. M., Jimenez S. A., Hall D. J., Varga J. Positive regulation of human alpha 1 (I) collagen promoter activity by transcription factor Sp1. Gene. 1995 Oct 27;164(2):229–234. doi: 10.1016/0378-1119(95)00508-4. [DOI] [PubMed] [Google Scholar]
- Mayne R. Cartilage collagens. What is their function, and are they involved in articular disease? Arthritis Rheum. 1989 Mar;32(3):241–246. doi: 10.1002/anr.1780320302. [DOI] [PubMed] [Google Scholar]
- Mayne R., Vail M. S., Mayne P. M., Miller E. J. Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc Natl Acad Sci U S A. 1976 May;73(5):1674–1678. doi: 10.1073/pnas.73.5.1674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murakami S., Lefebvre V., de Crombrugghe B. Potent inhibition of the master chondrogenic factor Sox9 gene by interleukin-1 and tumor necrosis factor-alpha. J Biol Chem. 2000 Feb 4;275(5):3687–3692. doi: 10.1074/jbc.275.5.3687. [DOI] [PubMed] [Google Scholar]
- Mättä A., Glumoff V., Paakkonen P., Liska D., Penttinen R. P., Elima K. Nuclear factor binding to an AP-1 site is associated with the activation of pro-alpha 1(I)-collagen gene in dedifferentiating chondrocytes. Biochem J. 1993 Sep 1;294(Pt 2):365–371. doi: 10.1042/bj2940365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nehrer S., Breinan H. A., Ramappa A., Hsu H. P., Minas T., Shortkroff S., Sledge C. B., Yannas I. V., Spector M. Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials. 1998 Dec;19(24):2313–2328. doi: 10.1016/s0142-9612(98)00143-4. [DOI] [PubMed] [Google Scholar]
- Ng L. J., Wheatley S., Muscat G. E., Conway-Campbell J., Bowles J., Wright E., Bell D. M., Tam P. P., Cheah K. S., Koopman P. SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol. 1997 Mar 1;183(1):108–121. doi: 10.1006/dbio.1996.8487. [DOI] [PubMed] [Google Scholar]
- Reginato A. M., Iozzo R. V., Jimenez S. A. Formation of nodular structures resembling mature articular cartilage in long-term primary cultures of human fetal epiphyseal chondrocytes on a hydrogel substrate. Arthritis Rheum. 1994 Sep;37(9):1338–1349. doi: 10.1002/art.1780370912. [DOI] [PubMed] [Google Scholar]
- Shortkroff S., Barone L., Hsu H. P., Wrenn C., Gagne T., Chi T., Breinan H., Minas T., Sledge C. B., Tubo R. Healing of chondral and osteochondral defects in a canine model: the role of cultured chondrocytes in regeneration of articular cartilage. Biomaterials. 1996 Jan;17(2):147–154. doi: 10.1016/0142-9612(96)85759-0. [DOI] [PubMed] [Google Scholar]
- Srivastava V. M., MaleMud C. J., Sokoloff L. Chondroid expression by lapine articular chondrocytes in spinner culture following monolayer growth. Connect Tissue Res. 1974;2(2):127–136. doi: 10.3109/03008207409152098. [DOI] [PubMed] [Google Scholar]
- Vacanti C. A., Langer R., Schloo B., Vacanti J. P. Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconstr Surg. 1991 Nov;88(5):753–759. doi: 10.1097/00006534-199111000-00001. [DOI] [PubMed] [Google Scholar]
- Wagner T., Wirth J., Meyer J., Zabel B., Held M., Zimmer J., Pasantes J., Bricarelli F. D., Keutel J., Hustert E. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994 Dec 16;79(6):1111–1120. doi: 10.1016/0092-8674(94)90041-8. [DOI] [PubMed] [Google Scholar]
- Wakitani S., Goto T., Young R. G., Mansour J. M., Goldberg V. M., Caplan A. I. Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng. 1998 Winter;4(4):429–444. doi: 10.1089/ten.1998.4.429. [DOI] [PubMed] [Google Scholar]
- Watt F. M., Dudhia J. Prolonged expression of differentiated phenotype by chondrocytes cultured at low density on a composite substrate of collagen and agarose that restricts cell spreading. Differentiation. 1988 Jul;38(2):140–147. doi: 10.1111/j.1432-0436.1988.tb00208.x. [DOI] [PubMed] [Google Scholar]
- Watt F. M. Effect of seeding density on stability of the differentiated phenotype of pig articular chondrocytes in culture. J Cell Sci. 1988 Mar;89(Pt 3):373–378. doi: 10.1242/jcs.89.3.373. [DOI] [PubMed] [Google Scholar]
- van der Rest M., Garrone R. Collagen family of proteins. FASEB J. 1991 Oct;5(13):2814–2823. [PubMed] [Google Scholar]
- von der Mark K., Conrad G. Cartilage cell differentiation: review. Clin Orthop Relat Res. 1979 Mar-Apr;(139):185–205. [PubMed] [Google Scholar]
- von der Mark K., Gauss V., von der Mark H., Müller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature. 1977 Jun 9;267(5611):531–532. doi: 10.1038/267531a0. [DOI] [PubMed] [Google Scholar]