Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Dec 1;360(Pt 2):491–498. doi: 10.1042/0264-6021:3600491

Identification of a new polyphosphoinositide in plants, phosphatidylinositol 5-monophosphate (PtdIns5P), and its accumulation upon osmotic stress.

H J Meijer 1, C P Berrie 1, C Iurisci 1, N Divecha 1, A Musgrave 1, T Munnik 1
PMCID: PMC1222250  PMID: 11716778

Abstract

Polyphosphoinositides play an important role in membrane trafficking and cell signalling. In plants, two PtdInsP isomers have been described, PtdIns3P and PtdIns4P. Here we report the identification of a third, PtdIns5P. Evidence is based on the conversion of the endogenous PtdInsP pool into PtdIns(4,5)P(2) by a specific PtdIns5P 4-OH kinase, and on in vivo (32)P-labelling studies coupled to HPLC head-group analysis. In Chlamydomonas, 3-8% of the PtdInsP pool was PtdIns5P, 10-15% was PtdIns3P and the rest was PtdIns4P. In seedlings of Vicia faba and suspension-cultured tomato cells, the level of PtdIns5P was about 18%, indicating that PtdIns5P is a general plant lipid that represents a significant proportion of the PtdInsP pool. Activating phospholipase C (PLC) signalling in Chlamydomonas cells with mastoparan increased the turnover of PtdIns(4,5)P(2) at the cost of PtdIns4P, but did not affect the level of PtdIns5P. This indicates that PtdIns(4,5)P(2) is synthesized from PtdIns4P rather than from PtdIns5P during PLC signalling. However, when cells were subjected to hyperosmotic stress, PtdIns5P levels rapidly increased, suggesting a role in osmotic-stress signalling. The potential pathways of PtdIns5P formation are discussed.

Full Text

The Full Text of this article is available as a PDF (212.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berrie C. P., Iurisci C., Corda D. Membrane transport and in vitro metabolism of the Ras cascade messenger, glycerophosphoinositol 4-phosphate. Eur J Biochem. 1999 Dec;266(2):413–419. doi: 10.1046/j.1432-1327.1999.00870.x. [DOI] [PubMed] [Google Scholar]
  2. Brearley C. A., Hanke D. E. 3- and 4-phosphorylated phosphatidylinositols in the aquatic plant Spirodela polyrhiza L. Biochem J. 1992 Apr 1;283(Pt 1):255–260. doi: 10.1042/bj2830255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brearley C. A., Hanke D. E. Pathway of synthesis of 3,4- and 4,5-phosphorylated phosphatidylinositols in the duckweed Spirodela polyrhiza L. Biochem J. 1993 Feb 15;290(Pt 1):145–150. doi: 10.1042/bj2900145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cho M. H., Shears S. B., Boss W. F. Changes in phosphatidylinositol metabolism in response to hyperosmotic stress in Daucus carota L. cells grown in suspension culture. Plant Physiol. 1993 Oct;103(2):637–647. doi: 10.1104/pp.103.2.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clarke N. G., Dawson R. M. Alkaline O leads to N-transacylation. A new method for the quantitative deacylation of phospholipids. Biochem J. 1981 Apr 1;195(1):301–306. doi: 10.1042/bj1950301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Corvera S., D'Arrigo A., Stenmark H. Phosphoinositides in membrane traffic. Curr Opin Cell Biol. 1999 Aug;11(4):460–465. doi: 10.1016/S0955-0674(99)80066-0. [DOI] [PubMed] [Google Scholar]
  7. Divecha N., Truong O., Hsuan J. J., Hinchliffe K. A., Irvine R. F. The cloning and sequence of the C isoform of PtdIns4P 5-kinase. Biochem J. 1995 Aug 1;309(Pt 3):715–719. doi: 10.1042/bj3090715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dove S. K., Cooke F. T., Douglas M. R., Sayers L. G., Parker P. J., Michell R. H. Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature. 1997 Nov 13;390(6656):187–192. doi: 10.1038/36613. [DOI] [PubMed] [Google Scholar]
  9. Drobak B. K., Watkins P. A. Inositol(1,4,5)trisphosphate production in plant cells: an early response to salinity and hyperosmotic stress. FEBS Lett. 2000 Sep 22;481(3):240–244. doi: 10.1016/s0014-5793(00)01941-4. [DOI] [PubMed] [Google Scholar]
  10. Einspahr K. J., Peeler T. C., Thompson G. A., Jr Rapid changes in polyphosphoinositide metabolism associated with the response of Dunaliella salina to hypoosmotic shock. J Biol Chem. 1988 Apr 25;263(12):5775–5779. [PubMed] [Google Scholar]
  11. Fruman D. A., Meyers R. E., Cantley L. C. Phosphoinositide kinases. Annu Rev Biochem. 1998;67:481–507. doi: 10.1146/annurev.biochem.67.1.481. [DOI] [PubMed] [Google Scholar]
  12. Gillooly D. J., Simonsen A., Stenmark H. Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochem J. 2001 Apr 15;355(Pt 2):249–258. doi: 10.1042/0264-6021:3550249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hinchliffe K. A., Ciruela A., Irvine R. F. PIPkins1, their substrates and their products: new functions for old enzymes. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):87–104. doi: 10.1016/s0005-2760(98)00140-4. [DOI] [PubMed] [Google Scholar]
  14. Hinchliffe K. A., Irvine R. F., Divecha N. Regulation of PtdIns4P 5-kinase C by thrombin-stimulated changes in its phosphorylation state in human platelets. Biochem J. 1998 Jan 1;329(Pt 1):115–119. doi: 10.1042/bj3290115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hughes W. E., Woscholski R., Cooke F. T., Patrick R. S., Dove S. K., McDonald N. Q., Parker P. J. SAC1 encodes a regulated lipid phosphoinositide phosphatase, defects in which can be suppressed by the homologous Inp52p and Inp53p phosphatases. J Biol Chem. 2000 Jan 14;275(2):801–808. doi: 10.1074/jbc.275.2.801. [DOI] [PubMed] [Google Scholar]
  16. Irvine R. F., Letcher A. J., Stephens L. R., Musgrave A. Inositol polyphosphate metabolism and inositol lipids in a green alga, Chlamydomonas eugametos. Biochem J. 1992 Jan 1;281(Pt 1):261–266. doi: 10.1042/bj2810261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Itoh T., Ijuin T., Takenawa T. A novel phosphatidylinositol-5-phosphate 4-kinase (phosphatidylinositol-phosphate kinase IIgamma) is phosphorylated in the endoplasmic reticulum in response to mitogenic signals. J Biol Chem. 1998 Aug 7;273(32):20292–20299. doi: 10.1074/jbc.273.32.20292. [DOI] [PubMed] [Google Scholar]
  18. Katan M., Allen V. L. Modular PH and C2 domains in membrane attachment and other functions. FEBS Lett. 1999 Jun 4;452(1-2):36–40. doi: 10.1016/s0014-5793(99)00531-1. [DOI] [PubMed] [Google Scholar]
  19. Kunz J., Wilson M. P., Kisseleva M., Hurley J. H., Majerus P. W., Anderson R. A. The activation loop of phosphatidylinositol phosphate kinases determines signaling specificity. Mol Cell. 2000 Jan;5(1):1–11. doi: 10.1016/s1097-2765(00)80398-6. [DOI] [PubMed] [Google Scholar]
  20. Leevers S. J., Vanhaesebroeck B., Waterfield M. D. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol. 1999 Apr;11(2):219–225. doi: 10.1016/s0955-0674(99)80029-5. [DOI] [PubMed] [Google Scholar]
  21. Lemmon M. A., Ferguson K. M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J. 2000 Aug 15;350(Pt 1):1–18. [PMC free article] [PubMed] [Google Scholar]
  22. Majerus P. W., Kisseleva M. V., Norris F. A. The role of phosphatases in inositol signaling reactions. J Biol Chem. 1999 Apr 16;274(16):10669–10672. doi: 10.1074/jbc.274.16.10669. [DOI] [PubMed] [Google Scholar]
  23. McEwen R. K., Dove S. K., Cooke F. T., Painter G. F., Holmes A. B., Shisheva A., Ohya Y., Parker P. J., Michell R. H. Complementation analysis in PtdInsP kinase-deficient yeast mutants demonstrates that Schizosaccharomyces pombe and murine Fab1p homologues are phosphatidylinositol 3-phosphate 5-kinases. J Biol Chem. 1999 Nov 26;274(48):33905–33912. doi: 10.1074/jbc.274.48.33905. [DOI] [PubMed] [Google Scholar]
  24. Meijer H. J., Arisz S. A., Van Himbergen J. A., Musgrave A., Munnik T. Hyperosmotic stress rapidly generates lyso-phosphatidic acid in Chlamydomonas. Plant J. 2001 Mar;25(5):541–548. doi: 10.1046/j.1365-313x.2001.00990.x. [DOI] [PubMed] [Google Scholar]
  25. Morris J. B., Hinchliffe K. A., Ciruela A., Letcher A. J., Irvine R. F. Thrombin stimulation of platelets causes an increase in phosphatidylinositol 5-phosphate revealed by mass assay. FEBS Lett. 2000 Jun 9;475(1):57–60. doi: 10.1016/s0014-5793(00)01625-2. [DOI] [PubMed] [Google Scholar]
  26. Munnik T., Irvine R. F., Musgrave A. Phospholipid signalling in plants. Biochim Biophys Acta. 1998 Jan 23;1389(3):222–272. doi: 10.1016/s0005-2760(97)00158-6. [DOI] [PubMed] [Google Scholar]
  27. Munnik T., Irvine R. F., Musgrave A. Rapid turnover of phosphatidylinositol 3-phosphate in the green alga Chlamydomonas eugametos: signs of a phosphatidylinositide 3-kinase signalling pathway in lower plants? Biochem J. 1994 Mar 1;298(Pt 2):269–273. doi: 10.1042/bj2980269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Munnik T., Meijer H. J. Osmotic stress activates distinct lipid and MAPK signalling pathways in plants. FEBS Lett. 2001 Jun 8;498(2-3):172–178. doi: 10.1016/s0014-5793(01)02492-9. [DOI] [PubMed] [Google Scholar]
  29. Munnik T., Meijer H. J., Ter Riet B., Hirt H., Frank W., Bartels D., Musgrave A. Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J. 2000 Apr;22(2):147–154. doi: 10.1046/j.1365-313x.2000.00725.x. [DOI] [PubMed] [Google Scholar]
  30. Munnik T. Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci. 2001 May;6(5):227–233. doi: 10.1016/s1360-1385(01)01918-5. [DOI] [PubMed] [Google Scholar]
  31. Munnik T., de Vrije T., Irvine R. F., Musgrave A. Identification of diacylglycerol pyrophosphate as a novel metabolic product of phosphatidic acid during G-protein activation in plants. J Biol Chem. 1996 Jun 28;271(26):15708–15715. doi: 10.1074/jbc.271.26.15708. [DOI] [PubMed] [Google Scholar]
  32. Pical C., Westergren T., Dove S. K., Larsson C., Sommarin M. Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells. J Biol Chem. 1999 Dec 31;274(53):38232–38240. doi: 10.1074/jbc.274.53.38232. [DOI] [PubMed] [Google Scholar]
  33. Rameh L. E., Tolias K. F., Duckworth B. C., Cantley L. C. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature. 1997 Nov 13;390(6656):192–196. doi: 10.1038/36621. [DOI] [PubMed] [Google Scholar]
  34. Sbrissa D., Ikonomov O. C., Shisheva A. PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides. Effect of insulin. J Biol Chem. 1999 Jul 30;274(31):21589–21597. doi: 10.1074/jbc.274.31.21589. [DOI] [PubMed] [Google Scholar]
  35. Schacht J. Purification of polyphosphoinositides by chromatography on immobilized neomycin. J Lipid Res. 1978 Nov;19(8):1063–1067. [PubMed] [Google Scholar]
  36. Stephens L. R., Hughes K. T., Irvine R. F. Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. Nature. 1991 May 2;351(6321):33–39. doi: 10.1038/351033a0. [DOI] [PubMed] [Google Scholar]
  37. Stevenson J. M., Perera I. Y., Heilmann I., Persson S., Boss W. F. Inositol signaling and plant growth. Trends Plant Sci. 2000 Jun;5(6):252–258. doi: 10.1016/s1360-1385(00)01652-6. [DOI] [PubMed] [Google Scholar]
  38. Toker A. The synthesis and cellular roles of phosphatidylinositol 4,5-bisphosphate. Curr Opin Cell Biol. 1998 Apr;10(2):254–261. doi: 10.1016/s0955-0674(98)80148-8. [DOI] [PubMed] [Google Scholar]
  39. Tolias K. F., Rameh L. E., Ishihara H., Shibasaki Y., Chen J., Prestwich G. D., Cantley L. C., Carpenter C. L. Type I phosphatidylinositol-4-phosphate 5-kinases synthesize the novel lipids phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 5-phosphate. J Biol Chem. 1998 Jul 17;273(29):18040–18046. doi: 10.1074/jbc.273.29.18040. [DOI] [PubMed] [Google Scholar]
  40. Whiteford C. C., Brearley C. A., Ulug E. T. Phosphatidylinositol 3,5-bisphosphate defines a novel PI 3-kinase pathway in resting mouse fibroblasts. Biochem J. 1997 May 1;323(Pt 3):597–601. doi: 10.1042/bj3230597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zhang X., Loijens J. C., Boronenkov I. V., Parker G. J., Norris F. A., Chen J., Thum O., Prestwich G. D., Majerus P. W., Anderson R. A. Phosphatidylinositol-4-phosphate 5-kinase isozymes catalyze the synthesis of 3-phosphate-containing phosphatidylinositol signaling molecules. J Biol Chem. 1997 Jul 11;272(28):17756–17761. doi: 10.1074/jbc.272.28.17756. [DOI] [PubMed] [Google Scholar]
  42. van der Luit A. H., Piatti T., van Doorn A., Musgrave A., Felix G., Boller T., Munnik T. Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. Plant Physiol. 2000 Aug;123(4):1507–1516. doi: 10.1104/pp.123.4.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES