Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Dec 15;360(Pt 3):539–548. doi: 10.1042/0264-6021:3600539

NMR structure of bucandin, a neurotoxin from the venom of the Malayan krait (Bungarus candidus).

A M Torres 1, R M Kini 1, N Selvanayagam 1, P W Kuchel 1
PMCID: PMC1222255  PMID: 11736642

Abstract

A high-resolution solution structure of bucandin, a neurotoxin from Malayan krait (Bungarus candidus), was determined by (1)H-NMR spectroscopy and molecular dynamics. The average backbone root-mean-square deviation for the 20 calculated structures and the mean structure is 0.47 A (1 A=0.1 nm) for all residues and 0.24 A for the well-defined region that spans residues 23-58. Secondary-structural elements include two antiparallel beta-sheets characterized by two and four strands. According to recent X-ray analysis, bucandin adopts a typical three-finger loop motif and yet it has some peculiar characteristics that set it apart from other common alpha-neurotoxins. The presence of a fourth strand in the second antiparallel beta-sheet had not been observed before in three-finger toxins, and this feature was well represented in the NMR structure. Although the overall fold of the NMR structure is similar to that of the X-ray crystal structure, there are significant differences between the two structures that have implications for the pharmacological action of the toxin. These include the extent of the beta-sheets, the conformation of the region spanning residues 42-49 and the orientation of some side chains. In comparison with the X-ray structure, the NMR structure shows that the hydrophobic side chains of Trp(27) and Trp(36) are stacked together and are orientated towards the tip of the middle loop. The NMR study also showed that the two-stranded beta-sheet incorporated in the first loop, as defined by residues 1-22, and the C-terminus from Asn(59), is probably flexible relative to the rest of the molecule. On the basis of the dispositions of the hydrophobic and hydrophilic side chains, the structure of bucandin is clearly different from those of cytotoxins.

Full Text

The Full Text of this article is available as a PDF (359.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrand J. P., Blackledge M. J., Pascaud F., Hollecker M., Marion D. NMR and restrained molecular dynamics study of the three-dimensional solution structure of toxin FS2, a specific blocker of the L-type calcium channel, isolated from black mamba venom. Biochemistry. 1995 May 2;34(17):5923–5937. doi: 10.1021/bi00017a022. [DOI] [PubMed] [Google Scholar]
  2. Betzel C., Lange G., Pal G. P., Wilson K. S., Maelicke A., Saenger W. The refined crystal structure of alpha-cobratoxin from Naja naja siamensis at 2.4-A resolution. J Biol Chem. 1991 Nov 15;266(32):21530–21536. doi: 10.2210/pdb2ctx/pdb. [DOI] [PubMed] [Google Scholar]
  3. Bilwes A., Rees B., Moras D., Ménez R., Ménez A. X-ray structure at 1.55 A of toxin gamma, a cardiotoxin from Naja nigricollis venom. Crystal packing reveals a model for insertion into membranes. J Mol Biol. 1994 May 27;239(1):122–136. doi: 10.1006/jmbi.1994.1357. [DOI] [PubMed] [Google Scholar]
  4. Connolly P. J., Stern A. S., Hoch J. C. Solution structure of LSIII, a long neurotoxin from the venom of Laticauda semifasciata. Biochemistry. 1996 Jan 16;35(2):418–426. doi: 10.1021/bi9520287. [DOI] [PubMed] [Google Scholar]
  5. Dementieva D. V., Bocharov E. V., Arseniev A. S. Two forms of cytotoxin II (cardiotoxin) from Naja naja oxiana in aqueous solution: spatial structures with tightly bound water molecules. Eur J Biochem. 1999 Jul;263(1):152–162. doi: 10.1046/j.1432-1327.1999.00478.x. [DOI] [PubMed] [Google Scholar]
  6. Dufourcq J., Faucon J. F., Bernard E., Pezolet M., Tessier M., van Rietschoten J., Delori P., Rochat H. Structure-function relationships for cardiotoxins interacting with phospholipids. Toxicon. 1982;20(1):165–174. doi: 10.1016/0041-0101(82)90187-8. [DOI] [PubMed] [Google Scholar]
  7. Güntert P., Mumenthaler C., Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997 Oct 17;273(1):283–298. doi: 10.1006/jmbi.1997.1284. [DOI] [PubMed] [Google Scholar]
  8. Hutchinson E. G., Thornton J. M. PROMOTIF--a program to identify and analyze structural motifs in proteins. Protein Sci. 1996 Feb;5(2):212–220. doi: 10.1002/pro.5560050204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  10. Kuhn P., Deacon A. M., Comoso S., Rajaseger G., Kini R. M., Usón I., Kolatkar P. R. The atomic resolution structure of bucandin, a novel toxin isolated from the Malayan krait, determined by direct methods. Acta Crystallogr D Biol Crystallogr. 2000 Nov;56(Pt 11):1401–1407. doi: 10.1107/s0907444900011501. [DOI] [PubMed] [Google Scholar]
  11. Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
  12. Mumenthaler C., Braun W. Automated assignment of simulated and experimental NOESY spectra of proteins by feedback filtering and self-correcting distance geometry. J Mol Biol. 1995 Dec 1;254(3):465–480. doi: 10.1006/jmbi.1995.0631. [DOI] [PubMed] [Google Scholar]
  13. Mumenthaler C., Güntert P., Braun W., Wüthrich K. Automated combined assignment of NOESY spectra and three-dimensional protein structure determination. J Biomol NMR. 1997 Dec;10(4):351–362. doi: 10.1023/a:1018383106236. [DOI] [PubMed] [Google Scholar]
  14. Peng S. S., Kumar T. K., Jayaraman G., Chang C. C., Yu C. Solution structure of toxin b, a long neurotoxin from the venom of the king cobra (Ophiophagus hannah). J Biol Chem. 1997 Mar 21;272(12):7817–7823. doi: 10.1074/jbc.272.12.7817. [DOI] [PubMed] [Google Scholar]
  15. Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
  16. Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
  17. Smith J. L., Corfield P. W., Hendrickson W. A., Low B. W. Refinement at 1.4 A resolution of a model of erabutoxin b: treatment of ordered solvent and discrete disorder. Acta Crystallogr A. 1988 May 1;44(Pt 3):357–368. doi: 10.1107/s0108767388000303. [DOI] [PubMed] [Google Scholar]
  18. Ségalas I., Roumestand C., Zinn-Justin S., Gilquin B., Ménez R., Ménez A., Toma F. Solution structure of a green mamba toxin that activates muscarinic acetylcholine receptors, as studied by nuclear magnetic resonance and molecular modeling. Biochemistry. 1995 Jan 31;34(4):1248–1260. doi: 10.1021/bi00004a019. [DOI] [PubMed] [Google Scholar]
  19. Torres A. M., de Plater G. M., Doverskog M., Birinyi-Strachan L. C., Nicholson G. M., Gallagher C. H., Kuchel P. W. Defensin-like peptide-2 from platypus venom: member of a class of peptides with a distinct structural fold. Biochem J. 2000 Jun 15;348(Pt 3):649–656. [PMC free article] [PubMed] [Google Scholar]
  20. Tsetlin V. Snake venom alpha-neurotoxins and other 'three-finger' proteins. Eur J Biochem. 1999 Sep;264(2):281–286. doi: 10.1046/j.1432-1327.1999.00623.x. [DOI] [PubMed] [Google Scholar]
  21. Wagner G., Braun W., Havel T. F., Schaumann T., Go N., Wüthrich K. Protein structures in solution by nuclear magnetic resonance and distance geometry. The polypeptide fold of the basic pancreatic trypsin inhibitor determined using two different algorithms, DISGEO and DISMAN. J Mol Biol. 1987 Aug 5;196(3):611–639. doi: 10.1016/0022-2836(87)90037-4. [DOI] [PubMed] [Google Scholar]
  22. Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]
  23. de Weille J. R., Schweitz H., Maes P., Tartar A., Lazdunski M. Calciseptine, a peptide isolated from black mamba venom, is a specific blocker of the L-type calcium channel. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2437–2440. doi: 10.1073/pnas.88.6.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Additional structural table
bj3600539add.pdf (8.3KB, pdf)

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES