Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Dec 15;360(Pt 3):549–556. doi: 10.1042/0264-6021:3600549

Human kinesin superfamily member 4 is dominantly localized in the nuclear matrix and is associated with chromosomes during mitosis.

Y M Lee 1, S Lee 1, E Lee 1, H Shin 1, H Hahn 1, W Choi 1, W Kim 1
PMCID: PMC1222256  PMID: 11736643

Abstract

In a previous study, we identified the human counterpart of murine kinesin superfamily member 4 (KIF4), a microtubule-based motor protein [Oh, Hahn, Torrey, Shin, Choi, Lee, Morse and Kim (2000) Biochim. Biophys. Acta 1493, 219-224]. As an initial step to understand the function(s) of human KIF4, its subcellular localization in HeLa cells was examined by using immunocytochemical and subcellular fractionation methods, and it was found that most KIF4 is localized in the nucleus. Since murine KIF4 is known to transport cytoplasmic vesicles, dominant nuclear localization of the human counterpart was somewhat surprising. Subsequent subnuclear fractionation revealed predominant association of KIF4 with the nuclear matrix. These results clearly indicate that human KIF4 is, at least, a nuclear protein. In further confirmation of this conclusion, the hexapeptide PKLRRR (amino acids 773-778) in the molecule was found to function as a nuclear localization signal. During the mitotic phase of the cell cycle, human KIF4 was associated with the chromosomes, suggesting that human KIF4 might be a microtubule-based mitotic motor, with DNA as its cargo.

Full Text

The Full Text of this article is available as a PDF (229.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aizawa H., Sekine Y., Takemura R., Zhang Z., Nangaku M., Hirokawa N. Kinesin family in murine central nervous system. J Cell Biol. 1992 Dec;119(5):1287–1296. doi: 10.1083/jcb.119.5.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baeuerle P. A., Baltimore D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science. 1988 Oct 28;242(4878):540–546. doi: 10.1126/science.3140380. [DOI] [PubMed] [Google Scholar]
  3. Barrett J. G., Manning B. D., Snyder M. The Kar3p kinesin-related protein forms a novel heterodimeric structure with its associated protein Cik1p. Mol Biol Cell. 2000 Jul;11(7):2373–2385. doi: 10.1091/mbc.11.7.2373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bloom G. S., Wagner M. C., Pfister K. K., Brady S. T. Native structure and physical properties of bovine brain kinesin and identification of the ATP-binding subunit polypeptide. Biochemistry. 1988 May 3;27(9):3409–3416. doi: 10.1021/bi00409a043. [DOI] [PubMed] [Google Scholar]
  5. Boulikas T. Nuclear localization signals (NLS). Crit Rev Eukaryot Gene Expr. 1993;3(3):193–227. [PubMed] [Google Scholar]
  6. Brady S. T. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature. 1985 Sep 5;317(6032):73–75. doi: 10.1038/317073a0. [DOI] [PubMed] [Google Scholar]
  7. Eisenman R. N., Tachibana C. Y., Abrams H. D., Hann S. R. V-myc- and c-myc-encoded proteins are associated with the nuclear matrix. Mol Cell Biol. 1985 Jan;5(1):114–126. doi: 10.1128/mcb.5.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldstein L. S. The kinesin superfamily: tails of functional redundancy. Trends Cell Biol. 1991 Oct;1(4):93–98. doi: 10.1016/0962-8924(91)90036-9. [DOI] [PubMed] [Google Scholar]
  9. Goldstein L. S., Yang Z. Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu Rev Neurosci. 2000;23:39–71. doi: 10.1146/annurev.neuro.23.1.39. [DOI] [PubMed] [Google Scholar]
  10. Heald R., Walczak C. E. Microtubule-based motor function in mitosis. Curr Opin Struct Biol. 1999 Apr;9(2):268–274. doi: 10.1016/s0959-440x(99)80037-2. [DOI] [PubMed] [Google Scholar]
  11. Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science. 1998 Jan 23;279(5350):519–526. doi: 10.1126/science.279.5350.519. [DOI] [PubMed] [Google Scholar]
  12. Hirokawa N., Noda Y., Okada Y. Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr Opin Cell Biol. 1998 Feb;10(1):60–73. doi: 10.1016/s0955-0674(98)80087-2. [DOI] [PubMed] [Google Scholar]
  13. Kim W., Tang Y., Okada Y., Torrey T. A., Chattopadhyay S. K., Pfleiderer M., Falkner F. G., Dorner F., Choi W., Hirokawa N. Binding of murine leukemia virus Gag polyproteins to KIF4, a microtubule-based motor protein. J Virol. 1998 Aug;72(8):6898–6901. doi: 10.1128/jvi.72.8.6898-6901.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kosik K. S., Orecchio L. D., Schnapp B., Inouye H., Neve R. L. The primary structure and analysis of the squid kinesin heavy chain. J Biol Chem. 1990 Feb 25;265(6):3278–3283. [PubMed] [Google Scholar]
  15. Kuznetsov S. A., Vaisberg E. A., Shanina N. A., Magretova N. N., Chernyak V. Y., Gelfand V. I. The quaternary structure of bovine brain kinesin. EMBO J. 1988 Feb;7(2):353–356. doi: 10.1002/j.1460-2075.1988.tb02820.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nakagawa T., Tanaka Y., Matsuoka E., Kondo S., Okada Y., Noda Y., Kanai Y., Hirokawa N. Identification and classification of 16 new kinesin superfamily (KIF) proteins in mouse genome. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9654–9659. doi: 10.1073/pnas.94.18.9654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Oh S., Hahn H., Torrey T. A., Shin H., Choi W., Lee Y. M., Morse H. C., Kim W. Identification of the human homologue of mouse KIF4, a kinesin superfamily motor protein. Biochim Biophys Acta. 2000 Sep 7;1493(1-2):219–224. doi: 10.1016/s0167-4781(00)00151-2. [DOI] [PubMed] [Google Scholar]
  18. Olmsted J. B. Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J Biol Chem. 1981 Dec 10;256(23):11955–11957. [PubMed] [Google Scholar]
  19. Pederson T. Half a century of "the nuclear matrix". Mol Biol Cell. 2000 Mar;11(3):799–805. doi: 10.1091/mbc.11.3.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Peretti D., Peris L., Rosso S., Quiroga S., Cáceres A. Evidence for the involvement of KIF4 in the anterograde transport of L1-containing vesicles. J Cell Biol. 2000 Apr 3;149(1):141–152. doi: 10.1083/jcb.149.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Persson H., Leder P. Nuclear localization and DNA binding properties of a protein expressed by human c-myc oncogene. Science. 1984 Aug 17;225(4663):718–721. doi: 10.1126/science.6463648. [DOI] [PubMed] [Google Scholar]
  22. Rieder C. L., Salmon E. D. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol. 1998 Aug;8(8):310–318. doi: 10.1016/s0962-8924(98)01299-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sekine Y., Okada Y., Noda Y., Kondo S., Aizawa H., Takemura R., Hirokawa N. A novel microtubule-based motor protein (KIF4) for organelle transports, whose expression is regulated developmentally. J Cell Biol. 1994 Oct;127(1):187–201. doi: 10.1083/jcb.127.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tang Y., Winkler U., Freed E. O., Torrey T. A., Kim W., Li H., Goff S. P., Morse H. C., 3rd Cellular motor protein KIF-4 associates with retroviral Gag. J Virol. 1999 Dec;73(12):10508–10513. doi: 10.1128/jvi.73.12.10508-10513.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vale R. D., Schnapp B. J., Reese T. S., Sheetz M. P. Movement of organelles along filaments dissociated from the axoplasm of the squid giant axon. Cell. 1985 Feb;40(2):449–454. doi: 10.1016/0092-8674(85)90159-x. [DOI] [PubMed] [Google Scholar]
  26. Vale R. D., Schnapp B. J., Reese T. S., Sheetz M. P. Organelle, bead, and microtubule translocations promoted by soluble factors from the squid giant axon. Cell. 1985 Mar;40(3):559–569. doi: 10.1016/0092-8674(85)90204-1. [DOI] [PubMed] [Google Scholar]
  27. Vernos I., Raats J., Hirano T., Heasman J., Karsenti E., Wylie C. Xklp1, a chromosomal Xenopus kinesin-like protein essential for spindle organization and chromosome positioning. Cell. 1995 Apr 7;81(1):117–127. doi: 10.1016/0092-8674(95)90376-3. [DOI] [PubMed] [Google Scholar]
  28. Wang S. Z., Adler R. Chromokinesin: a DNA-binding, kinesin-like nuclear protein. J Cell Biol. 1995 Mar;128(5):761–768. doi: 10.1083/jcb.128.5.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yang J. T., Laymon R. A., Goldstein L. S. A three-domain structure of kinesin heavy chain revealed by DNA sequence and microtubule binding analyses. Cell. 1989 Mar 10;56(5):879–889. doi: 10.1016/0092-8674(89)90692-2. [DOI] [PubMed] [Google Scholar]
  30. Yang J. T., Saxton W. M., Stewart R. J., Raff E. C., Goldstein L. S. Evidence that the head of kinesin is sufficient for force generation and motility in vitro. Science. 1990 Jul 6;249(4964):42–47. doi: 10.1126/science.2142332. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES