Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Dec 15;360(Pt 3):617–623. doi: 10.1042/0264-6021:3600617

Kynurenine aminotransferase and glutamine transaminase K of Escherichia coli: identity with aspartate aminotransferase.

Q Han 1, J Fang 1, J Li 1
PMCID: PMC1222264  PMID: 11736651

Abstract

The present study describes the isolation of a protein from Escherichia coli possessing kynurenine aminotransferase (KAT) activity and its identification as aspartate aminotransferase (AspAT). KAT catalyses the transamination of kynurenine and 3-hydroxykynurenine to kynurenic acid and xanthurenic acid respectively, and the enzyme activity can be easily detected in E. coli cells. Separation of the E. coli protein possessing KAT activity through various chromatographic steps led to the isolation of the enzyme. N-terminal sequencing of the purified protein determined its first 10 N-terminal amino acid residues, which were identical with those of the E. coli AspAT. Recombinant AspAT (R-AspAT), homologously expressed in an E. coli/pET22b expression system, was capable of catalysing the transamination of both l-kynurenine (K(m)=3 mM; V(max)=7.9 micromol.min(-1).mg(-1)) and 3-hydroxy-dl-kynurenine (K(m)=3.7 mM; V(max)=1.25 micromol.min(-1).mg(-1)) in the presence of pyruvate as an amino acceptor, and exhibited its maximum activity at temperatures between 50-60 degrees C and at a pH of approx. 7.0. Like mammalian KATs, R-AspAT also displayed high glutamine transaminase K activity when l-phenylalanine was used as an amino donor (K(m)=8 mM; V(max)=20.6 micromol.min(-1).mg(-1)). The exact match of the first ten N-terminal amino acid residues of the KAT-active protein with that of AspAT, in conjunction with the high KAT activity of R-AspAT, provides convincing evidence that the identity of the E. coli protein is AspAT.

Full Text

The Full Text of this article is available as a PDF (180.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham D. G., Cooper A. J. Glutamine transaminase K and cysteine S-conjugate beta-lyase activity stains. Anal Biochem. 1991 Sep 2;197(2):421–427. doi: 10.1016/0003-2697(91)90414-o. [DOI] [PubMed] [Google Scholar]
  2. Antoine F. R., Wei C. I., Littell R. C., Marshall M. R. HPLC method for analysis of free amino acids in fish using o-phthaldialdehyde precolumn derivatization. J Agric Food Chem. 1999 Dec;47(12):5100–5107. doi: 10.1021/jf990032+. [DOI] [PubMed] [Google Scholar]
  3. Billker O., Lindo V., Panico M., Etienne A. E., Paxton T., Dell A., Rogers M., Sinden R. E., Morris H. R. Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature. 1998 Mar 19;392(6673):289–292. doi: 10.1038/32667. [DOI] [PubMed] [Google Scholar]
  4. Buchli R., Alberati-Giani D., Malherbe P., Köhler C., Broger C., Cesura A. M. Cloning and functional expression of a soluble form of kynurenine/alpha-aminoadipate aminotransferase from rat kidney. J Biol Chem. 1995 Dec 8;270(49):29330–29335. doi: 10.1074/jbc.270.49.29330. [DOI] [PubMed] [Google Scholar]
  5. Cooper A. J., Anders M. W. Glutamine transaminase K and cysteine conjugate beta-lyase. Ann N Y Acad Sci. 1990;585:118–127. doi: 10.1111/j.1749-6632.1990.tb28048.x. [DOI] [PubMed] [Google Scholar]
  6. Garcia G. E., Wirtz R. A., Barr J. R., Woolfitt A., Rosenberg R. Xanthurenic acid induces gametogenesis in Plasmodium, the malaria parasite. J Biol Chem. 1998 May 15;273(20):12003–12005. doi: 10.1074/jbc.273.20.12003. [DOI] [PubMed] [Google Scholar]
  7. Gloss L. M., Kirsch J. F. Decreasing the basicity of the active site base, Lys-258, of Escherichia coli aspartate aminotransferase by replacement with gamma-thialysine. Biochemistry. 1995 Mar 28;34(12):3990–3998. doi: 10.1021/bi00012a017. [DOI] [PubMed] [Google Scholar]
  8. Hayashi H., Kagamiyama H. Transient-state kinetics of the reaction of aspartate aminotransferase with aspartate at low pH reveals dual routes in the enzyme-substrate association process. Biochemistry. 1997 Nov 4;36(44):13558–13569. doi: 10.1021/bi971638z. [DOI] [PubMed] [Google Scholar]
  9. Hayashi H., Mizuguchi H., Kagamiyama H. The imine-pyridine torsion of the pyridoxal 5'-phosphate Schiff base of aspartate aminotransferase lowers its pKa in the unliganded enzyme and is crucial for the successive increase in the pKa during catalysis. Biochemistry. 1998 Oct 27;37(43):15076–15085. doi: 10.1021/bi981517e. [DOI] [PubMed] [Google Scholar]
  10. Jäger J., Moser M., Sauder U., Jansonius J. N. Crystal structures of Escherichia coli aspartate aminotransferase in two conformations. Comparison of an unliganded open and two liganded closed forms. J Mol Biol. 1994 Jun 3;239(2):285–305. doi: 10.1006/jmbi.1994.1368. [DOI] [PubMed] [Google Scholar]
  11. Kuramitsu S., Hiromi K., Hayashi H., Morino Y., Kagamiyama H. Pre-steady-state kinetics of Escherichia coli aspartate aminotransferase catalyzed reactions and thermodynamic aspects of its substrate specificity. Biochemistry. 1990 Jun 12;29(23):5469–5476. doi: 10.1021/bi00475a010. [DOI] [PubMed] [Google Scholar]
  12. Li J., Li G. Transamination of 3-hydroxykynurenine to produce xanthurenic acid: a major branch pathway of tryptophan metabolism in the mosquito, Aedes aegypti, during larval development. Insect Biochem Mol Biol. 1997 Oct;27(10):859–867. doi: 10.1016/s0965-1748(97)00068-4. [DOI] [PubMed] [Google Scholar]
  13. Matharu A., Hayashi H., Kagamiyama H., Maras B., John R. A. Contributions of the substrate-binding arginine residues to maleate-induced closure of the active site of Escherichia coli aspartate aminotransferase. Eur J Biochem. 2001 Mar;268(6):1640–1645. [PubMed] [Google Scholar]
  14. Mizuguchi H., Hayashi H., Okada K., Miyahara I., Hirotsu K., Kagamiyama H. Strain is more important than electrostatic interaction in controlling the pKa of the catalytic group in aspartate aminotransferase. Biochemistry. 2001 Jan 16;40(2):353–360. doi: 10.1021/bi001403e. [DOI] [PubMed] [Google Scholar]
  15. Mosca M., Cozzi L., Breton J., Avanzi N., Toma S., Okuno E., Schwarcz R., Speciale C., Magagnin S., Mostardini M. Cloning of rat and human kynurenine aminotransferase. Adv Exp Med Biol. 1996;398:449–454. doi: 10.1007/978-1-4613-0381-7_70. [DOI] [PubMed] [Google Scholar]
  16. Mosca M., Cozzi L., Breton J., Speciale C., Okuno E., Schwarcz R., Benatti L. Molecular cloning of rat kynurenine aminotransferase: identity with glutamine transaminase K. FEBS Lett. 1994 Oct 10;353(1):21–24. doi: 10.1016/0014-5793(94)01003-x. [DOI] [PubMed] [Google Scholar]
  17. Naya Y., Ohnishi M., Ikeda M., Miki W., Nakanishi K. Physiological role of 3-hydroxykynurenine and xanthurenic acid upon crustacean molting. Adv Exp Med Biol. 1991;294:309–318. doi: 10.1007/978-1-4684-5952-4_28. [DOI] [PubMed] [Google Scholar]
  18. Naya Y., Ohnishi M., Ikeda M., Miki W., Nakanishi K. What is molt-inhibiting hormone? The role of an ecdysteroidogenesis inhibitor in the crustacean molting cycle. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6826–6829. doi: 10.1073/pnas.86.17.6826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Okamoto A., Higuchi T., Hirotsu K., Kuramitsu S., Kagamiyama H. X-ray crystallographic study of pyridoxal 5'-phosphate-type aspartate aminotransferases from Escherichia coli in open and closed form. J Biochem. 1994 Jul;116(1):95–107. doi: 10.1093/oxfordjournals.jbchem.a124509. [DOI] [PubMed] [Google Scholar]
  20. Okuno E., Du F., Ishikawa T., Tsujimoto M., Nakamura M., Schwarcz R., Kido R. Purification and characterization of kynurenine-pyruvate aminotransferase from rat kidney and brain. Brain Res. 1990 Nov 26;534(1-2):37–44. doi: 10.1016/0006-8993(90)90109-o. [DOI] [PubMed] [Google Scholar]
  21. Okuno E., Schmidt W., Parks D. A., Nakamura M., Schwarcz R. Measurement of rat brain kynurenine aminotransferase at physiological kynurenine concentrations. J Neurochem. 1991 Aug;57(2):533–540. doi: 10.1111/j.1471-4159.1991.tb03783.x. [DOI] [PubMed] [Google Scholar]
  22. Plant N., Kitchen I., Goldfarb P. S., Gibson G. G. Developmental modulation of cysteine conjugate beta-lyase/glutamine transaminase K/kynurenine aminotransferase mRNA in rat brain. Eur J Drug Metab Pharmacokinet. 1997 Oct-Dec;22(4):335–339. doi: 10.1007/BF03190967. [DOI] [PubMed] [Google Scholar]
  23. Tobes M. C., Mason M. Alpha-Aminoadipate aminotransferase and kynurenine aminotransferase. Purification, characterization, and further evidence for identity. J Biol Chem. 1977 Jul 10;252(13):4591–4599. [PubMed] [Google Scholar]
  24. Urenjak J., Obrenovitch T. P. Neuroprotective potency of kynurenic acid against excitotoxicity. Neuroreport. 2000 Apr 27;11(6):1341–1344. doi: 10.1097/00001756-200004270-00038. [DOI] [PubMed] [Google Scholar]
  25. Yu P., Mosbrook D. M., Tagle D. A. Genomic organization and expression analysis of mouse kynurenine aminotransferase II, a possible factor in the pathophysiology of Huntington's disease. Mamm Genome. 1999 Sep;10(9):845–852. doi: 10.1007/s003359901102. [DOI] [PubMed] [Google Scholar]
  26. el-Asrar A. M., Morse P. H., Maimone D., Torczynski E., Reder A. T. MK-801 protects retinal neurons from hypoxia and the toxicity of glutamate and aspartate. Invest Ophthalmol Vis Sci. 1992 Nov;33(12):3463–3468. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES