Abstract
Previously, we have performed subtractive hybridization to identify genes up-regulated in hypertrophic chondrocytes of the avian epiphyseal growth plate. In the present study, we report the identification of one of the clones as UDP-glucose pyrophosphorylase (UDPG-PPase) and propose a possible function for this enzyme in regulating hyaluronan (HA) synthesis in hypertrophic cartilage. We have cloned the 2.6 kb full-length cDNA for avian UDPG-PPase and confirmed its up-regulation in hypertrophic versus non-hypertrophic cartilage by Northern-blot analysis. The 6-fold increase in mRNA was paralleled by an equivalent increase in enzymic activity. The enzyme catalyses the conversion of glucose 1-phosphate into UDP-glucose, which is used to synthesize a number of cellular components, including HA. Overexpression of enzymically active UDPG-PPase in non-hypertrophic chondrocytes resulted in a 2-3-fold increase in total HA, as determined by a competitive binding assay and immunohistochemistry. In the developing growth plate, HA synthesis was elevated in the hypertrophic zone along with the up-regulation of the HA synthase (HAS)-2 gene. Our data suggest that an increase in both activities, UDPG-PPase and HAS-2, is required for non-hypertrophic chondrocytes to synthesize an amount of HA comparable with that in hypertrophic chondrocytes. Therefore we conclude that HA synthesis during chondrocyte differentiation is regulated at the level of the substrate-provider gene, UDPG-PPase, as well as the HAS genes.
Full Text
The Full Text of this article is available as a PDF (215.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alini M., Matsui Y., Dodge G. R., Poole A. R. The extracellular matrix of cartilage in the growth plate before and during calcification: changes in composition and degradation of type II collagen. Calcif Tissue Int. 1992 Apr;50(4):327–335. doi: 10.1007/BF00301630. [DOI] [PubMed] [Google Scholar]
- Chen W. Y., Abatangelo G. Functions of hyaluronan in wound repair. Wound Repair Regen. 1999 Mar-Apr;7(2):79–89. doi: 10.1046/j.1524-475x.1999.00079.x. [DOI] [PubMed] [Google Scholar]
- Cheng S. D., Peng H. L., Chang H. Y. Localization of the human UGP2 gene encoding the muscle isoform of UDPglucose pyrophosphorylase to 2p13-p14 by fluorescence in situ hybridization. Genomics. 1997 Feb 1;39(3):414–416. doi: 10.1006/geno.1996.4426. [DOI] [PubMed] [Google Scholar]
- Crater D. L., van de Rijn I. Hyaluronic acid synthesis operon (has) expression in group A streptococci. J Biol Chem. 1995 Aug 4;270(31):18452–18458. doi: 10.1074/jbc.270.31.18452. [DOI] [PubMed] [Google Scholar]
- Dimond R. L., Farnsworth P. A., Loomis W. F. Isolation and characterization of mutations affecting UDPG pyrophosphorylase activity in Dictyostelium discoideum. Dev Biol. 1976 May;50(1):169–181. doi: 10.1016/0012-1606(76)90075-0. [DOI] [PubMed] [Google Scholar]
- Erenpreisa J., Roach H. I. Aberrant death in dark chondrocytes of the avian growth plate. Cell Death Differ. 1998 Jan;5(1):60–66. doi: 10.1038/sj.cdd.4400320. [DOI] [PubMed] [Google Scholar]
- Franke J., Sussman M. Synthesis of uridine diphosphate glucose pyrophosphorylase during the development of Dictyostelium discoideum. J Biol Chem. 1971 Nov;246(21):6381–6388. [PubMed] [Google Scholar]
- Green S. J., Tarone G., Underhill C. B. Distribution of hyaluronate and hyaluronate receptors in the adult lung. J Cell Sci. 1988 May;90(Pt 1):145–156. doi: 10.1242/jcs.90.1.145. [DOI] [PubMed] [Google Scholar]
- Hascall V. C., Heinegård D. Aggregation of cartilage proteoglycans. I. The role of hyaluronic acid. J Biol Chem. 1974 Jul 10;249(13):4232–4241. [PubMed] [Google Scholar]
- Hascall V. C., Heinegård D. Aggregation of cartilage proteoglycans. II. Oligosaccharide competitors of the proteoglycan-hyaluronic acid interaction. J Biol Chem. 1974 Jul 10;249(13):4242–4249. [PubMed] [Google Scholar]
- Itano N., Kimata K. Expression cloning and molecular characterization of HAS protein, a eukaryotic hyaluronan synthase. J Biol Chem. 1996 Apr 26;271(17):9875–9878. doi: 10.1074/jbc.271.17.9875. [DOI] [PubMed] [Google Scholar]
- Itano N., Kimata K. Molecular cloning of human hyaluronan synthase. Biochem Biophys Res Commun. 1996 May 24;222(3):816–820. doi: 10.1006/bbrc.1996.0827. [DOI] [PubMed] [Google Scholar]
- Kim J. J., Conrad H. E. Properties of cultured chondrocytes obtained from histologically distinct zones of the chick embryo tibiotarsus. J Biol Chem. 1977 Nov 25;252(22):8292–8299. [PubMed] [Google Scholar]
- Kongtawelert P., Ghosh P. A method for the quantitation of hyaluronan (hyaluronic acid) in biological fluids using a labeled avidin-biotin technique. Anal Biochem. 1990 Mar;185(2):313–318. doi: 10.1016/0003-2697(90)90300-x. [DOI] [PubMed] [Google Scholar]
- Nishida Y., Knudson C. B., Nietfeld J. J., Margulis A., Knudson W. Antisense inhibition of hyaluronan synthase-2 in human articular chondrocytes inhibits proteoglycan retention and matrix assembly. J Biol Chem. 1999 Jul 30;274(31):21893–21899. doi: 10.1074/jbc.274.31.21893. [DOI] [PubMed] [Google Scholar]
- Nurminskaya M., Linsenmayer T. F. Identification and characterization of up-regulated genes during chondrocyte hypertrophy. Dev Dyn. 1996 Jul;206(3):260–271. doi: 10.1002/(SICI)1097-0177(199607)206:3<260::AID-AJA4>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
- Nurminskaya M., Magee C., Nurminsky D., Linsenmayer T. F. Plasma transglutaminase in hypertrophic chondrocytes: expression and cell-specific intracellular activation produce cell death and externalization. J Cell Biol. 1998 Aug 24;142(4):1135–1144. doi: 10.1083/jcb.142.4.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oshima O., Leboy P. S., McDonald S. A., Tuan R. S., Shapiro I. M. Developmental expression of genes in chick growth cartilage detected by in situ hybridization. Calcif Tissue Int. 1989 Sep;45(3):182–192. doi: 10.1007/BF02556062. [DOI] [PubMed] [Google Scholar]
- Pavasant P., Shizari T. M., Underhill C. B. Distribution of hyaluronan in the epiphysial growth plate: turnover by CD44-expressing osteoprogenitor cells. J Cell Sci. 1994 Oct;107(Pt 10):2669–2677. doi: 10.1242/jcs.107.10.2669. [DOI] [PubMed] [Google Scholar]
- Pavasant P., Shizari T., Underhill C. B. Hyaluronan contributes to the enlargement of hypertrophic lacunae in the growth plate. J Cell Sci. 1996 Feb;109(Pt 2):327–334. doi: 10.1242/jcs.109.2.327. [DOI] [PubMed] [Google Scholar]
- Pavasant P., Shizari T., Underhill C. B. Hyaluronan synthesis by epiphysial chondrocytes is regulated by growth hormone, insulin-like growth factor-1, parathyroid hormone and transforming growth factor-beta 1. Matrix Biol. 1996 Dec;15(6):423–432. doi: 10.1016/s0945-053x(96)90161-4. [DOI] [PubMed] [Google Scholar]
- Recklies A. D., White C., Melching L., Roughley P. J. Differential regulation and expression of hyaluronan synthases in human articular chondrocytes, synovial cells and osteosarcoma cells. Biochem J. 2001 Feb 15;354(Pt 1):17–24. doi: 10.1042/0264-6021:3540017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmid T. M., Conrad H. E. Metabolism of low molecular weight collagen by chondrocytes obtained from histologically distinct zones of the chick embryo tibiotarsus. J Biol Chem. 1982 Oct 25;257(20):12451–12457. [PubMed] [Google Scholar]
- Schmid T. M., Linsenmayer T. F. A short chain (pro)collagen from aged endochondral chondrocytes. Biochemical characterization. J Biol Chem. 1983 Aug 10;258(15):9504–9509. [PubMed] [Google Scholar]
- Shyjan A. M., Heldin P., Butcher E. C., Yoshino T., Briskin M. J. Functional cloning of the cDNA for a human hyaluronan synthase. J Biol Chem. 1996 Sep 20;271(38):23395–23399. doi: 10.1074/jbc.271.38.23395. [DOI] [PubMed] [Google Scholar]
- Spicer A. P., Augustine M. L., McDonald J. A. Molecular cloning and characterization of a putative mouse hyaluronan synthase. J Biol Chem. 1996 Sep 20;271(38):23400–23406. doi: 10.1074/jbc.271.38.23400. [DOI] [PubMed] [Google Scholar]
- Spicer A. P., Kaback L. A., Smith T. J., Seldin M. F. Molecular cloning and characterization of the human and mouse UDP-glucose dehydrogenase genes. J Biol Chem. 1998 Sep 25;273(39):25117–25124. doi: 10.1074/jbc.273.39.25117. [DOI] [PubMed] [Google Scholar]
- Spicer A. P., Olson J. S., McDonald J. A. Molecular cloning and characterization of a cDNA encoding the third putative mammalian hyaluronan synthase. J Biol Chem. 1997 Apr 4;272(14):8957–8961. doi: 10.1074/jbc.272.14.8957. [DOI] [PubMed] [Google Scholar]
- Stocum D. L., Davis R. M., Leger M., Conrad H. E. Development of the tibiotarsus in the chick embryo: biosynthetic activities of histologically distinct regions. J Embryol Exp Morphol. 1979 Dec;54:155–170. [PubMed] [Google Scholar]
- Tian X. M., Chen S. Q., Morales T. I., Hascall V. C. Biochemical and morphological studies of steady state and lipopolysaccaride treated bovine articular cartilage explant cultures. Connect Tissue Res. 1989;19(2-4):195–218. doi: 10.3109/03008208909043897. [DOI] [PubMed] [Google Scholar]
- Toole B. P. Hyaluronan in morphogenesis. Semin Cell Dev Biol. 2001 Apr;12(2):79–87. doi: 10.1006/scdb.2000.0244. [DOI] [PubMed] [Google Scholar]
- VILLAR-PALASI C., LARNER J. Levels of activity of the enzymes of the glycogen cycle in rat tissues. Arch Biochem Biophys. 1960 Feb;86:270–273. doi: 10.1016/0003-9861(60)90417-3. [DOI] [PubMed] [Google Scholar]
- Watanabe K., Yamaguchi Y. Molecular identification of a putative human hyaluronan synthase. J Biol Chem. 1996 Sep 20;271(38):22945–22948. doi: 10.1074/jbc.271.38.22945. [DOI] [PubMed] [Google Scholar]
- von der Mark K., von der Mark H. The role of three genetically distinct collagen types in endochondral ossification and calcification of cartilage. J Bone Joint Surg Br. 1977 Nov;59-B(4):458–464. doi: 10.1302/0301-620X.59B4.72756. [DOI] [PubMed] [Google Scholar]