Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Dec 15;360(Pt 3):691–698. doi: 10.1042/0264-6021:3600691

Phosphoinositide 3-kinase-gamma induces Xenopus oocyte maturation via lipid kinase activity.

S Hehl 1, B Stoyanov 1, W Oehrl 1, R Schönherr 1, R Wetzker 1, S H Heinemann 1
PMCID: PMC1222274  PMID: 11736661

Abstract

Type-I phosphoinositide 3-kinases (PI3Ks) were characterized as a group of intracellular signalling proteins expressing both protein and lipid kinase activities. Recent studies implicate PI3Ks as mediators of oocyte maturation, but the molecular mechanisms are poorly defined. Here we used the Xenopus oocyte expression system as a model to investigate a possible contribution of the gamma-isoform of PI3K (PI3Kgamma) in the different pathways leading to cell-cycle progression by monitoring the time course of germinal vesicle breakdown (GVBD). Expression of a constitutive active PI3Kgamma (PI3Kgamma-CAAX) induced GVBD and increased the levels of phosphorylated Akt/protein kinase B and mitogen-activated protein kinase (MAPK). Furthermore, PI3Kgamma-CAAX accelerated progesterone-induced GVBD, but had no effect on GVBD induced by insulin. The effects of PI3Kgamma-CAAX could be suppressed by pre-incubation of the oocytes with LY294002, PD98059 or roscovitine, inhibitors of PI3K, MEK (MAPK/extracellular-signal-regulated protein kinase kinase) and cdc2/cyclin B kinase, respectively. Mutants of PI3Kgamma-CAAX, in which either lipid kinase or both lipid and protein kinase activities were altered or eliminated, did not induce significant GVBD. Our data demonstrate that expression of PI3Kgamma in Xenopus oocytes accelerates their progesterone-induced maturation and that lipid kinase activity is required to induce this effect.

Full Text

The Full Text of this article is available as a PDF (312.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen C. B., Roth R. A., Conti M. Protein kinase B/Akt induces resumption of meiosis in Xenopus oocytes. J Biol Chem. 1998 Jul 24;273(30):18705–18708. doi: 10.1074/jbc.273.30.18705. [DOI] [PubMed] [Google Scholar]
  2. Bayaa M., Booth R. A., Sheng Y., Liu X. J. The classical progesterone receptor mediates Xenopus oocyte maturation through a nongenomic mechanism. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12607–12612. doi: 10.1073/pnas.220302597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bondeva T., Pirola L., Bulgarelli-Leva G., Rubio I., Wetzker R., Wymann M. P. Bifurcation of lipid and protein kinase signals of PI3Kgamma to the protein kinases PKB and MAPK. Science. 1998 Oct 9;282(5387):293–296. doi: 10.1126/science.282.5387.293. [DOI] [PubMed] [Google Scholar]
  4. Carnero A., Lacal J. C. Wortmannin, an inhibitor of phosphatidyl-inositol 3-kinase, induces oocyte maturation through a MPF-MAPK-dependent pathway. FEBS Lett. 1998 Jan 30;422(2):155–159. doi: 10.1016/s0014-5793(97)01619-0. [DOI] [PubMed] [Google Scholar]
  5. Cork R. J., Robinson K. R. Second messenger signalling during hormone-induced Xenopus oocyte maturation. Zygote. 1994 Nov;2(4):289–299. doi: 10.1017/s0967199400002112. [DOI] [PubMed] [Google Scholar]
  6. Deuter-Reinhard M., Apell G., Pot D., Klippel A., Williams L. T., Kavanaugh W. M. SIP/SHIP inhibits Xenopus oocyte maturation induced by insulin and phosphatidylinositol 3-kinase. Mol Cell Biol. 1997 May;17(5):2559–2565. doi: 10.1128/mcb.17.5.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ferrell J. E., Jr, Machleder E. M. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science. 1998 May 8;280(5365):895–898. doi: 10.1126/science.280.5365.895. [DOI] [PubMed] [Google Scholar]
  8. Ferrell J. E., Jr Xenopus oocyte maturation: new lessons from a good egg. Bioessays. 1999 Oct;21(10):833–842. doi: 10.1002/(SICI)1521-1878(199910)21:10<833::AID-BIES5>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  9. Fisher D. L., Brassac T., Galas S., Dorée M. Dissociation of MAP kinase activation and MPF activation in hormone-stimulated maturation of Xenopus oocytes. Development. 1999 Oct;126(20):4537–4546. doi: 10.1242/dev.126.20.4537. [DOI] [PubMed] [Google Scholar]
  10. Flament S., Bodart J. F., Bertout M., Browaeys E., Rousseau A., Vilain J. P. Differential effects of 6-DMAP, olomoucine and roscovitine on Xenopus oocytes and eggs. Zygote. 2000 Feb;8(1):3–14. doi: 10.1017/s0967199400000770. [DOI] [PubMed] [Google Scholar]
  11. Grigorescu F., Baccara M. T., Rouard M., Renard E. Insulin and IGF-1 signaling in oocyte maturation. Horm Res. 1994;42(1-2):55–61. doi: 10.1159/000184146. [DOI] [PubMed] [Google Scholar]
  12. Guadagno T. M., Ferrell J. E., Jr Requirement for MAPK activation for normal mitotic progression in Xenopus egg extracts. Science. 1998 Nov 13;282(5392):1312–1315. doi: 10.1126/science.282.5392.1312. [DOI] [PubMed] [Google Scholar]
  13. Hu Q., Klippel A., Muslin A. J., Fantl W. J., Williams L. T. Ras-dependent induction of cellular responses by constitutively active phosphatidylinositol-3 kinase. Science. 1995 Apr 7;268(5207):100–102. doi: 10.1126/science.7701328. [DOI] [PubMed] [Google Scholar]
  14. King R. W., Jackson P. K., Kirschner M. W. Mitosis in transition. Cell. 1994 Nov 18;79(4):563–571. doi: 10.1016/0092-8674(94)90542-8. [DOI] [PubMed] [Google Scholar]
  15. Klippel A., Escobedo M. A., Wachowicz M. S., Apell G., Brown T. W., Giedlin M. A., Kavanaugh W. M., Williams L. T. Activation of phosphatidylinositol 3-kinase is sufficient for cell cycle entry and promotes cellular changes characteristic of oncogenic transformation. Mol Cell Biol. 1998 Oct;18(10):5699–5711. doi: 10.1128/mcb.18.10.5699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Klippel A., Kavanaugh W. M., Pot D., Williams L. T. A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol Cell Biol. 1997 Jan;17(1):338–344. doi: 10.1128/mcb.17.1.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Klippel A., Reinhard C., Kavanaugh W. M., Apell G., Escobedo M. A., Williams L. T. Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol Cell Biol. 1996 Aug;16(8):4117–4127. doi: 10.1128/mcb.16.8.4117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Krugmann S., Hawkins P. T., Pryer N., Braselmann S. Characterizing the interactions between the two subunits of the p101/p110gamma phosphoinositide 3-kinase and their role in the activation of this enzyme by G beta gamma subunits. J Biol Chem. 1999 Jun 11;274(24):17152–17158. doi: 10.1074/jbc.274.24.17152. [DOI] [PubMed] [Google Scholar]
  19. Liu X. J., Sorisky A., Zhu L., Pawson T. Molecular cloning of an amphibian insulin receptor substrate 1-like cDNA and involvement of phosphatidylinositol 3-kinase in insulin-induced Xenopus oocyte maturation. Mol Cell Biol. 1995 Jul;15(7):3563–3570. doi: 10.1128/mcb.15.7.3563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lopez-Ilasaca M., Crespo P., Pellici P. G., Gutkind J. S., Wetzker R. Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI 3-kinase gamma. Science. 1997 Jan 17;275(5298):394–397. doi: 10.1126/science.275.5298.394. [DOI] [PubMed] [Google Scholar]
  21. Lutz L. B., Kim B., Jahani D., Hammes S. R. G protein beta gamma subunits inhibit nongenomic progesterone-induced signaling and maturation in Xenopus laevis oocytes. Evidence for a release of inhibition mechanism for cell cycle progression. J Biol Chem. 2000 Dec 29;275(52):41512–41520. doi: 10.1074/jbc.M006757200. [DOI] [PubMed] [Google Scholar]
  22. López-Hernández E., Santos E. Oncogenic Ras-induced germinal vesicle breakdown is independent of phosphatidylinositol 3-kinase in Xenopus oocytes. FEBS Lett. 1999 May 28;451(3):284–288. doi: 10.1016/s0014-5793(99)00595-5. [DOI] [PubMed] [Google Scholar]
  23. Muslin A. J., Klippel A., Williams L. T. Phosphatidylinositol 3-kinase activity is important for progesterone-induced Xenopus oocyte maturation. Mol Cell Biol. 1993 Nov;13(11):6661–6666. doi: 10.1128/mcb.13.11.6661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Roche S., Downward J., Raynal P., Courtneidge S. A. A function for phosphatidylinositol 3-kinase beta (p85alpha-p110beta) in fibroblasts during mitogenesis: requirement for insulin- and lysophosphatidic acid-mediated signal transduction. Mol Cell Biol. 1998 Dec;18(12):7119–7129. doi: 10.1128/mcb.18.12.7119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sadler K. C., Ruderman J. V. Components of the signaling pathway linking the 1-methyladenine receptor to MPF activation and maturation in starfish oocytes. Dev Biol. 1998 May 1;197(1):25–38. doi: 10.1006/dbio.1998.8869. [DOI] [PubMed] [Google Scholar]
  26. Sheng Y., Tiberi M., Booth R. A., Ma C., Liu X. J. Regulation of Xenopus oocyte meiosis arrest by G protein betagamma subunits. Curr Biol. 2001 Mar 20;11(6):405–416. doi: 10.1016/s0960-9822(01)00123-3. [DOI] [PubMed] [Google Scholar]
  27. Stephens L. R., Eguinoa A., Erdjument-Bromage H., Lui M., Cooke F., Coadwell J., Smrcka A. S., Thelen M., Cadwallader K., Tempst P. The G beta gamma sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell. 1997 Apr 4;89(1):105–114. doi: 10.1016/s0092-8674(00)80187-7. [DOI] [PubMed] [Google Scholar]
  28. Stoyanov B., Volinia S., Hanck T., Rubio I., Loubtchenkov M., Malek D., Stoyanova S., Vanhaesebroeck B., Dhand R., Nürnberg B. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science. 1995 Aug 4;269(5224):690–693. doi: 10.1126/science.7624799. [DOI] [PubMed] [Google Scholar]
  29. Tian J., Kim S., Heilig E., Ruderman J. V. Identification of XPR-1, a progesterone receptor required for Xenopus oocyte activation. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14358–14363. doi: 10.1073/pnas.250492197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Toker A., Cantley L. C. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature. 1997 Jun 12;387(6634):673–676. doi: 10.1038/42648. [DOI] [PubMed] [Google Scholar]
  31. Vanhaesebroeck B., Higashi K., Raven C., Welham M., Anderson S., Brennan P., Ward S. G., Waterfield M. D. Autophosphorylation of p110delta phosphoinositide 3-kinase: a new paradigm for the regulation of lipid kinases in vitro and in vivo. EMBO J. 1999 Mar 1;18(5):1292–1302. doi: 10.1093/emboj/18.5.1292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vanhaesebroeck B., Waterfield M. D. Signaling by distinct classes of phosphoinositide 3-kinases. Exp Cell Res. 1999 Nov 25;253(1):239–254. doi: 10.1006/excr.1999.4701. [DOI] [PubMed] [Google Scholar]
  33. Wymann M. P., Pirola L. Structure and function of phosphoinositide 3-kinases. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):127–150. doi: 10.1016/s0005-2760(98)00139-8. [DOI] [PubMed] [Google Scholar]
  34. Yamamoto-Honda R., Honda Z., Ueki K., Tobe K., Kaburagi Y., Takahashi Y., Tamemoto H., Suzuki T., Itoh K., Akanuma Y. Mutant of insulin receptor substrate-1 incapable of activating phosphatidylinositol 3-kinase did not mediate insulin-stimulated maturation of Xenopus laevis oocytes. J Biol Chem. 1996 Nov 8;271(45):28677–28681. doi: 10.1074/jbc.271.45.28677. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES