Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Dec 15;360(Pt 3):699–706. doi: 10.1042/0264-6021:3600699

Determination of the native form of FadD, the Escherichia coli fatty acyl-CoA synthetase, and characterization of limited proteolysis by outer membrane protease OmpT.

J H Yoo 1, O H Cheng 1, G E Gerber 1
PMCID: PMC1222275  PMID: 11736662

Abstract

Several studies have described FadD, the Escherichia coli fatty acyl-CoA synthetase [also known as fatty acid:CoA ligase (AMP-forming); EC 6.2.1.3], as a 42-50 kDa enzyme. Based on sequencing and expression data from the fadD gene, other reports have suggested that FadD is a 62 kDa protein and represents the sole fatty acyl-CoA synthetase in E. coli. We report that the 62 kDa FadD enzyme is a substrate for the outer membrane protease OmpT in vitro, producing a 43 kDa C-terminal fragment and a 19 kDa N-terminal fragment. Immunoblotting with a FadD antibody revealed that only the 62 kDa form of the enzyme is present in vivo, but we utilized the proteolytic sensitivity of FadD to investigate its structure. Photoaffinity labelling experiments revealed that both intact FadD and the 43 kDa fragment bound a long-chain fatty acid. Intact and cleaved FadD were also purified to determine the effect of cleavage on function. When using oleate as a substrate, cleaved FadD displayed 2-fold higher K(m) and V(max) values compared with intact FadD, but the catalytic efficiencies (k(cat)/K(m)) of the two forms were similar. This indicated that cleavage did not adversely affect enzyme activity. Proteolysis of FadD by OmpT was altered by the presence of oleate or ATP, both of which are ligands for the fatty acyl-CoA synthetase. This suggested that FadD undergoes ligand-induced conformational changes and implies that the region surrounding the cleavage site is mobile, a common characteristic of linker domains.

Full Text

The Full Text of this article is available as a PDF (266.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azizan A., Black P. N. Use of transposon TnphoA to identify genes for cell envelope proteins of Escherichia coli required for long-chain fatty acid transport: the periplasmic protein Tsp potentiates long-chain fatty acid transport. J Bacteriol. 1994 Nov;176(21):6653–6662. doi: 10.1128/jb.176.21.6653-6662.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Black P. N. Characterization of FadL-specific fatty acid binding in Escherichia coli. Biochim Biophys Acta. 1990 Aug 28;1046(1):97–105. doi: 10.1016/0005-2760(90)90099-j. [DOI] [PubMed] [Google Scholar]
  3. Black P. N., DiRusso C. C., Metzger A. K., Heimert T. L. Cloning, sequencing, and expression of the fadD gene of Escherichia coli encoding acyl coenzyme A synthetase. J Biol Chem. 1992 Dec 15;267(35):25513–25520. [PubMed] [Google Scholar]
  4. Black P. N., DiRusso C. C., Sherin D., MacColl R., Knudsen J., Weimar J. D. Affinity labeling fatty acyl-CoA synthetase with 9-p-azidophenoxy nonanoic acid and the identification of the fatty acid-binding site. J Biol Chem. 2000 Dec 8;275(49):38547–38553. doi: 10.1074/jbc.M006413200. [DOI] [PubMed] [Google Scholar]
  5. Black P. N., Said B., Ghosn C. R., Beach J. V., Nunn W. D. Purification and characterization of an outer membrane-bound protein involved in long-chain fatty acid transport in Escherichia coli. J Biol Chem. 1987 Jan 25;262(3):1412–1419. [PubMed] [Google Scholar]
  6. Black P. N., Zhang Q., Weimar J. D., DiRusso C. C. Mutational analysis of a fatty acyl-coenzyme A synthetase signature motif identifies seven amino acid residues that modulate fatty acid substrate specificity. J Biol Chem. 1997 Feb 21;272(8):4896–4903. doi: 10.1074/jbc.272.8.4896. [DOI] [PubMed] [Google Scholar]
  7. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  8. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S., Barry C. E., 3rd Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998 Jun 11;393(6685):537–544. doi: 10.1038/31159. [DOI] [PubMed] [Google Scholar]
  9. DiRusso C. C., Black P. N., Weimar J. D. Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. Prog Lipid Res. 1999 Mar;38(2):129–197. doi: 10.1016/s0163-7827(98)00022-8. [DOI] [PubMed] [Google Scholar]
  10. Duplay P., Bedouelle H., Fowler A., Zabin I., Saurin W., Hofnung M. Sequences of the malE gene and of its product, the maltose-binding protein of Escherichia coli K12. J Biol Chem. 1984 Aug 25;259(16):10606–10613. [PubMed] [Google Scholar]
  11. Faergeman N. J., Knudsen J. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J. 1997 Apr 1;323(Pt 1):1–12. doi: 10.1042/bj3230001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fontana A., Fassina G., Vita C., Dalzoppo D., Zamai M., Zambonin M. Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochemistry. 1986 Apr 22;25(8):1847–1851. doi: 10.1021/bi00356a001. [DOI] [PubMed] [Google Scholar]
  13. Fujino T., Man-Jong K., Minekura H., Suzuki H., Yamamoto T. T. Alternative translation initiation generates acyl-CoA synthetase 3 isoforms with heterogeneous amino termini. J Biochem. 1997 Jul;122(1):212–216. doi: 10.1093/oxfordjournals.jbchem.a021731. [DOI] [PubMed] [Google Scholar]
  14. Fulda M., Heinz E., Wolter F. P. Brassica napus cDNAs encoding fatty acyl-CoA synthetase. Plant Mol Biol. 1997 Mar;33(5):911–922. doi: 10.1023/a:1005780529307. [DOI] [PubMed] [Google Scholar]
  15. Fulda M., Heinz E., Wolter F. P. The fadD gene of Escherichia coli K12 is located close to rnd at 39.6 min of the chromosomal map and is a new member of the AMP-binding protein family. Mol Gen Genet. 1994 Feb;242(3):241–249. doi: 10.1007/BF00280412. [DOI] [PubMed] [Google Scholar]
  16. Gerber G. E., Mangroo D., Trigatti B. L. Identification of high affinity membrane-bound fatty acid-binding proteins using a photoreactive fatty acid. Mol Cell Biochem. 1993 Jun 9;123(1-2):39–44. doi: 10.1007/BF01076473. [DOI] [PubMed] [Google Scholar]
  17. Grabau C., Chang Y. Y., Cronan J. E., Jr Lipid binding by Escherichia coli pyruvate oxidase is disrupted by small alterations of the carboxyl-terminal region. J Biol Chem. 1989 Jul 25;264(21):12510–12519. [PubMed] [Google Scholar]
  18. Grabau C., Cronan J. E., Jr In vivo function of Escherichia coli pyruvate oxidase specifically requires a functional lipid binding site. Biochemistry. 1986 Jul 1;25(13):3748–3751. doi: 10.1021/bi00361a003. [DOI] [PubMed] [Google Scholar]
  19. Grodberg J., Dunn J. J. ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol. 1988 Mar;170(3):1245–1253. doi: 10.1128/jb.170.3.1245-1253.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Groot P. H., Scholte H. R., Hülsmann W. C. Fatty acid activation: specificity, localization, and function. Adv Lipid Res. 1976;14:75–126. doi: 10.1016/b978-0-12-024914-5.50009-7. [DOI] [PubMed] [Google Scholar]
  21. Harington A., Schwarz E., Slonimski P. P., Herbert C. J. Subcellular relocalization of a long-chain fatty acid CoA ligase by a suppressor mutation alleviates a respiration deficiency in Saccharomyces cerevisiae. EMBO J. 1994 Dec 1;13(23):5531–5538. doi: 10.1002/j.1460-2075.1994.tb06890.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Henry M. F., Cronan J. E., Jr A new mechanism of transcriptional regulation: release of an activator triggered by small molecule binding. Cell. 1992 Aug 21;70(4):671–679. doi: 10.1016/0092-8674(92)90435-f. [DOI] [PubMed] [Google Scholar]
  23. Iijima H., Fujino T., Minekura H., Suzuki H., Kang M. J., Yamamoto T. Biochemical studies of two rat acyl-CoA synthetases, ACS1 and ACS2. Eur J Biochem. 1996 Dec 1;242(2):186–190. doi: 10.1111/j.1432-1033.1996.0186r.x. [DOI] [PubMed] [Google Scholar]
  24. Kameda K., Imai Y. Isolation and characterization of the multiple charge isoforms of acyl-CoA synthetase from Escherichia coli. Biochim Biophys Acta. 1985 Dec 20;832(3):343–350. doi: 10.1016/0167-4838(85)90269-9. [DOI] [PubMed] [Google Scholar]
  25. Kameda K., Nunn W. D. Purification and characterization of acyl coenzyme A synthetase from Escherichia coli. J Biol Chem. 1981 Jun 10;256(11):5702–5707. [PubMed] [Google Scholar]
  26. Kameda K., Suzuki L. K., Imai Y. Further purification, characterization and salt activation of acyl-CoA synthetase from Escherichia coli. Biochim Biophys Acta. 1985 May 29;840(1):29–36. doi: 10.1016/0304-4165(85)90158-8. [DOI] [PubMed] [Google Scholar]
  27. Klein K., Steinberg R., Fiethen B., Overath P. Fatty acid degradation in Escherichia coli. An inducible system for the uptake of fatty acids and further characterization of old mutants. Eur J Biochem. 1971 Apr;19(3):442–450. doi: 10.1111/j.1432-1033.1971.tb01334.x. [DOI] [PubMed] [Google Scholar]
  28. Knoll L. J., Johnson D. R., Gordon J. I. Biochemical studies of three Saccharomyces cerevisiae acyl-CoA synthetases, Faa1p, Faa2p, and Faa3p. J Biol Chem. 1994 Jun 10;269(23):16348–16356. [PubMed] [Google Scholar]
  29. Kramer R. A., Dekker N., Egmond M. R. Identification of active site serine and histidine residues in Escherichia coli outer membrane protease OmpT. FEBS Lett. 2000 Feb 25;468(2-3):220–224. doi: 10.1016/s0014-5793(00)01231-x. [DOI] [PubMed] [Google Scholar]
  30. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  31. Leblanc P., Capone J., Gerber G. E. Synthesis and biosynthetic utilization of radioactive photoreactive fatty acids. J Biol Chem. 1982 Dec 25;257(24):14586–14589. [PubMed] [Google Scholar]
  32. Mangroo D., Gerber G. E. Fatty acid uptake in Escherichia coli: regulation by recruitment of fatty acyl-CoA synthetase to the plasma membrane. Biochem Cell Biol. 1993 Jan-Feb;71(1-2):51–56. doi: 10.1139/o93-008. [DOI] [PubMed] [Google Scholar]
  33. Mangroo D., Gerber G. E. Photoaffinity labeling of fatty acid-binding proteins involved in long chain fatty acid transport in Escherichia coli. J Biol Chem. 1992 Aug 25;267(24):17095–17101. [PubMed] [Google Scholar]
  34. Mangroo D., Trigatti B. L., Gerber G. E. Membrane permeation and intracellular trafficking of long chain fatty acids: insights from Escherichia coli and 3T3-L1 adipocytes. Biochem Cell Biol. 1995 May-Jun;73(5-6):223–234. doi: 10.1139/o95-027. [DOI] [PubMed] [Google Scholar]
  35. Samuel D., Estroumza J., Ailhaud G. Partial purification and properties of acyl-CoA synthetase of Escherichia coli. Eur J Biochem. 1970 Feb;12(3):576–582. doi: 10.1111/j.1432-1033.1970.tb00889.x. [DOI] [PubMed] [Google Scholar]
  36. Sedgwick B. In vitro proteolytic cleavage of the Escherichia coli Ada protein by the ompT gene product. J Bacteriol. 1989 Apr;171(4):2249–2251. doi: 10.1128/jb.171.4.2249-2251.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shrago E., Woldegiorgis G., Ruoho A. E., DiRusso C. C. Fatty acyl CoA esters as regulators of cell metabolism. Prostaglandins Leukot Essent Fatty Acids. 1995 Feb-Mar;52(2-3):163–166. doi: 10.1016/0952-3278(95)90016-0. [DOI] [PubMed] [Google Scholar]
  38. Silber K. R., Sauer R. T. Deletion of the prc (tsp) gene provides evidence for additional tail-specific proteolytic activity in Escherichia coli K-12. Mol Gen Genet. 1994 Jan;242(2):237–240. doi: 10.1007/BF00391018. [DOI] [PubMed] [Google Scholar]
  39. Sugimura K., Higashi N. A novel outer-membrane-associated protease in Escherichia coli. J Bacteriol. 1988 Aug;170(8):3650–3654. doi: 10.1128/jb.170.8.3650-3654.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sugimura K., Nishihara T. Purification, characterization, and primary structure of Escherichia coli protease VII with specificity for paired basic residues: identity of protease VII and OmpT. J Bacteriol. 1988 Dec;170(12):5625–5632. doi: 10.1128/jb.170.12.5625-5632.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Suzuki H., Kawarabayasi Y., Kondo J., Abe T., Nishikawa K., Kimura S., Hashimoto T., Yamamoto T. Structure and regulation of rat long-chain acyl-CoA synthetase. J Biol Chem. 1990 May 25;265(15):8681–8685. [PubMed] [Google Scholar]
  42. Trigatti B. L., Gerber G. E. The effect of intracellular pH on long-chain fatty acid uptake in 3T3-L1 adipocytes: evidence that uptake involves the passive diffusion of protonated long-chain fatty acids across the plasma membrane. Biochem J. 1996 Jan 15;313(Pt 2):487–494. doi: 10.1042/bj3130487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Trigatti B. L., Mangroo D., Gerber G. E. Photoaffinity labeling and fatty acid permeation in 3T3-L1 adipocytes. J Biol Chem. 1991 Nov 25;266(33):22621–22625. [PubMed] [Google Scholar]
  44. Wilson J. E. The use of monoclonal antibodies and limited proteolysis in elucidation of structure-function relationships in proteins. Methods Biochem Anal. 1991;35:207–250. doi: 10.1002/9780470110560.ch4. [DOI] [PubMed] [Google Scholar]
  45. Witholt B., Boekhout M., Brock M., Kingma J., Heerikhuizen H. V., Leij L. D. An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli. Anal Biochem. 1976 Jul;74(1):160–170. doi: 10.1016/0003-2697(76)90320-1. [DOI] [PubMed] [Google Scholar]
  46. Zhao G. P., Somerville R. L. An amino acid switch (Gly281-->Arg) within the "hinge" region of the tryptophan synthase beta subunit creates a novel cleavage site for the OmpT protease and selectively diminishes affinity toward a specific monoclonal antibody. J Biol Chem. 1993 Jul 15;268(20):14912–14920. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES