Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Dec 15;360(Pt 3):707–715. doi: 10.1042/0264-6021:3600707

Phospholipase D1b and D2a generate structurally identical phosphatidic acid species in mammalian cells.

T R Pettitt 1, M McDermott 1, K M Saqib 1, N Shimwell 1, M J Wakelam 1
PMCID: PMC1222276  PMID: 11736663

Abstract

Mammalian cells contain different phospholipase D enzymes (PLDs) whose distinct physiological roles are poorly understood and whose products have not been characterized. The development of porcine aortic endothelial (PAE) cell lines able to overexpress PLD-1b or -2a under the control of an inducible promoter has enabled us to characterize both the substrate specificity and the phosphatidic acid (PtdOH) product of these enzymes under controlled conditions. Liquid chromatography-MS analysis showed that PLD1b- and PLD2a-transfected PAE cells, as well as COS7 and Rat1 cells, generate similar PtdOH and, in the presence of butan-1-ol, phosphatidylbutanol (PtdBut) profiles, enriched in mono- and di-unsaturated species, in particular 16:0/18:1. Although PtdBut mass increased, the species profile did not change in cells stimulated with ATP or PMA. Overexpression of PLD made little difference to basal or stimulated PtdBut formation, indicating that activity is tightly regulated in vivo and that factors other than just PLD protein levels limit hydrolytic function. In vitro assays using PLD-enriched lysates showed that the enzyme could utilize both phosphatidylcholine and, much less efficiently, phosphatidylethanolamine, with slight selectivity towards mono- and di-unsaturated species. Phosphatidylinositol was not a substrate. Thus PLD1b and PLD2a hydrolyse a structurally similar substrate pool to generate an identical PtdOH product enriched in mono- and di-unsaturated species that we propose to function as the intracellular messenger forms of this lipid.

Full Text

The Full Text of this article is available as a PDF (233.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balsinde J., Diez E., Fernandez B., Mollinedo F. Biochemical characterization of phospholipase D activity from human neutrophils. Eur J Biochem. 1989 Dec 22;186(3):717–724. doi: 10.1111/j.1432-1033.1989.tb15265.x. [DOI] [PubMed] [Google Scholar]
  2. Bokoch G. M., Reilly A. M., Daniels R. H., King C. C., Olivera A., Spiegel S., Knaus U. G. A GTPase-independent mechanism of p21-activated kinase activation. Regulation by sphingosine and other biologically active lipids. J Biol Chem. 1998 Apr 3;273(14):8137–8144. doi: 10.1074/jbc.273.14.8137. [DOI] [PubMed] [Google Scholar]
  3. Ching T. T., Wang D. S., Hsu A. L., Lu P. J., Chen C. S. Identification of multiple phosphoinositide-specific phospholipases D as new regulatory enzymes for phosphatidylinositol 3,4, 5-trisphosphate. J Biol Chem. 1999 Mar 26;274(13):8611–8617. doi: 10.1074/jbc.274.13.8611. [DOI] [PubMed] [Google Scholar]
  4. Cross M. J., Roberts S., Ridley A. J., Hodgkin M. N., Stewart A., Claesson-Welsh L., Wakelam M. J. Stimulation of actin stress fibre formation mediated by activation of phospholipase D. Curr Biol. 1996 May 1;6(5):588–597. doi: 10.1016/s0960-9822(02)00545-6. [DOI] [PubMed] [Google Scholar]
  5. Daniel L. W., Sciorra V. A., Ghosh S. Phospholipase D, tumor promoters, proliferation and prostaglandins. Biochim Biophys Acta. 1999 Jul 30;1439(2):265–276. doi: 10.1016/s1388-1981(99)00099-2. [DOI] [PubMed] [Google Scholar]
  6. Divecha N., Roefs M., Halstead J. R., D'Andrea S., Fernandez-Borga M., Oomen L., Saqib K. M., Wakelam M. J., D'Santos C. Interaction of the type Ialpha PIPkinase with phospholipase D: a role for the local generation of phosphatidylinositol 4, 5-bisphosphate in the regulation of PLD2 activity. EMBO J. 2000 Oct 16;19(20):5440–5449. doi: 10.1093/emboj/19.20.5440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frohman M. A., Morris A. J. Phospholipase D structure and regulation. Chem Phys Lipids. 1999 Apr;98(1-2):127–140. doi: 10.1016/s0009-3084(99)00025-0. [DOI] [PubMed] [Google Scholar]
  8. Grange M., Sette C., Cuomo M., Conti M., Lagarde M., Prigent A. F., Némoz G. The cAMP-specific phosphodiesterase PDE4D3 is regulated by phosphatidic acid binding. Consequences for cAMP signaling pathway and characterization of a phosphatidic acid binding site. J Biol Chem. 2000 Oct 27;275(43):33379–33387. doi: 10.1074/jbc.M006329200. [DOI] [PubMed] [Google Scholar]
  9. Hodgkin M. N., Clark J. M., Rose S., Saqib K., Wakelam M. J. Characterization of the regulation of phospholipase D activity in the detergent-insoluble fraction of HL60 cells by protein kinase C and small G-proteins. Biochem J. 1999 Apr 1;339(Pt 1):87–93. [PMC free article] [PubMed] [Google Scholar]
  10. Hodgkin M. N., Pettitt T. R., Martin A., Michell R. H., Pemberton A. J., Wakelam M. J. Diacylglycerols and phosphatidates: which molecular species are intracellular messengers? Trends Biochem Sci. 1998 Jun;23(6):200–204. doi: 10.1016/s0968-0004(98)01200-6. [DOI] [PubMed] [Google Scholar]
  11. Huang C., Wykle R. L., Daniel L. W., Cabot M. C. Identification of phosphatidylcholine-selective and phosphatidylinositol-selective phospholipases D in Madin-Darby canine kidney cells. J Biol Chem. 1992 Aug 25;267(24):16859–16865. [PubMed] [Google Scholar]
  12. Jones D. R., Pettitt T. R., Sanjuán M. A., Mérida I., Wakelam M. J. Interleukin-2 causes an increase in saturated/monounsaturated phosphatidic acid derived from 1,2-diacylglycerol and 1-O-alkyl-2-acylglycerol. J Biol Chem. 1999 Jun 11;274(24):16846–16852. doi: 10.1074/jbc.274.24.16846. [DOI] [PubMed] [Google Scholar]
  13. Jones D., Morgan C., Cockcroft S. Phospholipase D and membrane traffic. Potential roles in regulated exocytosis, membrane delivery and vesicle budding. Biochim Biophys Acta. 1999 Jul 30;1439(2):229–244. doi: 10.1016/s1388-1981(99)00097-9. [DOI] [PubMed] [Google Scholar]
  14. Kiss Z., Tomono M., Anderson W. B. Phorbol ester selectively stimulates the phospholipase D-mediated hydrolysis of phosphatidylethanolamine in multidrug-resistant MCF-7 human breast carcinoma cells. Biochem J. 1994 Sep 15;302(Pt 3):649–654. doi: 10.1042/bj3020649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kobayashi M., Kidd D., Hutson E., Grafton J., McNulty S., Rumsby M. Protein kinase C activation by 12-0-tetradecanoylphorbol 13-acetate in CG-4 line oligodendrocytes stimulates turnover of choline and ethanolamine phospholipids by phospholipase D and induces rapid process contraction. J Neurochem. 2001 Jan;76(2):361–371. doi: 10.1046/j.1471-4159.2001.00007.x. [DOI] [PubMed] [Google Scholar]
  16. Liscovitch M., Czarny M., Fiucci G., Tang X. Phospholipase D: molecular and cell biology of a novel gene family. Biochem J. 2000 Feb 1;345(Pt 3):401–415. [PMC free article] [PubMed] [Google Scholar]
  17. Madesh M., Balasubramanian K. A. Metal ion stimulation of phospholipase D-like activity of isolated rat intestinal mitochondria. Lipids. 1997 May;32(5):471–479. doi: 10.1007/s11745-997-0061-9. [DOI] [PubMed] [Google Scholar]
  18. McPhail L. C., Waite K. A., Regier D. S., Nixon J. B., Qualliotine-Mann D., Zhang W. X., Wallin R., Sergeant S. A novel protein kinase target for the lipid second messenger phosphatidic acid. Biochim Biophys Acta. 1999 Jul 30;1439(2):277–290. doi: 10.1016/s1388-1981(99)00100-6. [DOI] [PubMed] [Google Scholar]
  19. Mukherjee J. J., Chung T., Ways D. K., Kiss Z. Protein kinase Calpha is a major mediator of the stimulatory effect of phorbol ester on phospholipase D-mediated hydrolysis of phosphatidylethanolamine. J Biol Chem. 1996 Nov 15;271(46):28912–28917. doi: 10.1074/jbc.271.46.28912. [DOI] [PubMed] [Google Scholar]
  20. Pettitt T. R., Martin A., Horton T., Liossis C., Lord J. M., Wakelam M. J. Diacylglycerol and phosphatidate generated by phospholipases C and D, respectively, have distinct fatty acid compositions and functions. Phospholipase D-derived diacylglycerol does not activate protein kinase C in porcine aortic endothelial cells. J Biol Chem. 1997 Jul 11;272(28):17354–17359. doi: 10.1074/jbc.272.28.17354. [DOI] [PubMed] [Google Scholar]
  21. Pettitt T. R., Wakelam M. J. Diacylglycerol kinase epsilon, but not zeta, selectively removes polyunsaturated diacylglycerol, inducing altered protein kinase C distribution in vivo. J Biol Chem. 1999 Dec 17;274(51):36181–36186. doi: 10.1074/jbc.274.51.36181. [DOI] [PubMed] [Google Scholar]
  22. van Blitterswijk W. J., Houssa B. Properties and functions of diacylglycerol kinases. Cell Signal. 2000 Oct;12(9-10):595–605. doi: 10.1016/s0898-6568(00)00113-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES