Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Dec 15;360(Pt 3):717–726. doi: 10.1042/0264-6021:3600717

Influence of electrochemical properties in determining the sensitivity of [4Fe-4S] clusters in proteins to oxidative damage.

G J Tilley 1, R Camba 1, B K Burgess 1, F A Armstrong 1
PMCID: PMC1222277  PMID: 11736664

Abstract

Interconversion between [4Fe-4S] cubane and [3Fe-4S] cuboidal states represents one of the simplest structural changes an iron-sulphur cluster can undertake. This reaction is implicated in oxidative damage and in modulation of the activity and regulation of certain enzymes, and it is therefore important to understand the factors governing cluster stability and the processes that activate cluster conversion. In the present study, protein film voltammetry has been used to induce and monitor the oxidative conversion of [4Fe-4S] into [3Fe-4S] clusters in different variants of Azotobacter vinelandii ferredoxin I (AvFdI; the 8Fe form of the native protein), and DeltaThr(14)/DeltaAsp(15), Thr(14)-->Cys (T14C) and C42D mutants. The electrochemical results have been correlated with the differing oxygen sensitivities of [4Fe-4S] clusters, and comparisons have been drawn with other ferredoxins (Desulfovibrio africanus FdIII, Clostridium pasteurianum Fd, Thauera aromatica Fd and Pyrococcus furiosus Fd). In contrast with high-potential iron-sulphur proteins (HiPIPs) for which the oxidized species [4Fe-4S](3+) is inert to degradation and can be isolated, the hypervalent state in these ferredoxins (most obviously the 3+ level) is very labile, and the reduction potential at which this is formed is a key factor in determining the cluster's resistance to oxidative damage.

Full Text

The Full Text of this article is available as a PDF (238.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aono S., Bryant F. O., Adams M. W. A novel and remarkably thermostable ferredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Bacteriol. 1989 Jun;171(6):3433–3439. doi: 10.1128/jb.171.6.3433-3439.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armstrong F. A., Butt J. N., Sucheta A. Voltammetric studies of redox-active centers in metalloproteins adsorbed on electrodes. Methods Enzymol. 1993;227:479–500. doi: 10.1016/0076-6879(93)27020-h. [DOI] [PubMed] [Google Scholar]
  3. Armstrong F. A., George S. J., Cammack R., Hatchikian E. C., Thomson A. J. Electrochemical and spectroscopic characterization of the 7Fe form of ferredoxin III from Desulfovibrio africanus. Biochem J. 1989 Nov 15;264(1):265–273. doi: 10.1042/bj2640265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beinert H., Albracht S. P. New insights, ideas and unanswered questions concerning iron-sulfur clusters in mitochondria. Biochim Biophys Acta. 1982 Dec 31;683(3-4):245–277. doi: 10.1016/0304-4173(82)90003-9. [DOI] [PubMed] [Google Scholar]
  5. Beinert H., Holm R. H., Münck E. Iron-sulfur clusters: nature's modular, multipurpose structures. Science. 1997 Aug 1;277(5326):653–659. doi: 10.1126/science.277.5326.653. [DOI] [PubMed] [Google Scholar]
  6. Beinert H. Iron-sulfur proteins: ancient structures, still full of surprises. J Biol Inorg Chem. 2000 Feb;5(1):2–15. doi: 10.1007/s007750050002. [DOI] [PubMed] [Google Scholar]
  7. Beinert Helmut, Kennedy Mary Claire, Stout C. David. Aconitase as Ironminus signSulfur Protein, Enzyme, and Iron-Regulatory Protein. Chem Rev. 1996 Nov 7;96(7):2335–2374. doi: 10.1021/cr950040z. [DOI] [PubMed] [Google Scholar]
  8. Bian S., Hemann C. F., Hille R., Cowan J. A. Characterization of an autoreduction pathway for the [Fe4S4]3+ cluster of mutant Chromatium vinosum high-potential iron proteins. Site-directed mutagenesis studies to probe the role of phenylalanine 66 in defining the stability of the [Fe4S4] center provide evidence for oxidative degradation via a [Fe3S4] cluster. Biochemistry. 1996 Nov 19;35(46):14544–14552. doi: 10.1021/bi961658l. [DOI] [PubMed] [Google Scholar]
  9. Boll M., Fuchs G., Tilley G., Armstrong F. A., Lowe D. J. Unusual spectroscopic and electrochemical properties of the 2[4Fe-4S] ferredoxin of Thauera aromatica. Biochemistry. 2000 Apr 25;39(16):4929–4938. doi: 10.1021/bi9927890. [DOI] [PubMed] [Google Scholar]
  10. Brereton P. S., Verhagen M. F., Zhou Z. H., Adams M. W. Effect of iron-sulfur cluster environment in modulating the thermodynamic properties and biological function of ferredoxin from Pyrococcus furiosus. Biochemistry. 1998 May 19;37(20):7351–7362. doi: 10.1021/bi972864b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Calzolai L., Gorst C. M., Zhao Z. H., Teng Q., Adams M. W., La Mar G. N. 1H NMR investigation of the electronic and molecular structure of the four-iron cluster ferredoxin from the hyperthermophile Pyrococcus furiosus. Identification of Asp 14 as a cluster ligand in each of the four redox states. Biochemistry. 1995 Sep 12;34(36):11373–11384. doi: 10.1021/bi00036a010. [DOI] [PubMed] [Google Scholar]
  12. Camba R., Armstrong F. A. Investigations of the oxidative disassembly of Fe-S clusters in Clostridium pasteurianum 8Fe ferredoxin using pulsed-protein-film voltammetry. Biochemistry. 2000 Aug 29;39(34):10587–10598. doi: 10.1021/bi000832+. [DOI] [PubMed] [Google Scholar]
  13. Chen K., Hirst J., Camba R., Bonagura C. A., Stout C. D., Burgess B. K., Armstrong F. A. Atomically defined mechanism for proton transfer to a buried redox centre in a protein. Nature. 2000 Jun 15;405(6788):814–817. doi: 10.1038/35015610. [DOI] [PubMed] [Google Scholar]
  14. Conover R. C., Kowal A. T., Fu W. G., Park J. B., Aono S., Adams M. W., Johnson M. K. Spectroscopic characterization of the novel iron-sulfur cluster in Pyrococcus furiosus ferredoxin. J Biol Chem. 1990 May 25;265(15):8533–8541. [PubMed] [Google Scholar]
  15. Fawcett S. E., Davis D., Breton J. L., Thomson A. J., Armstrong F. A. Voltammetric studies of the reactions of iron-sulphur clusters ([3Fe-4S] or [M3Fe-4S]) formed in Pyrococcus furiosus ferredoxin. Biochem J. 1998 Oct 15;335(Pt 2):357–368. doi: 10.1042/bj3350357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gao-Sheridan H. S., Kemper M. A., Khayat R., Tilley G. J., Armstrong F. A., Sridhar V., Prasad G. S., Stout C. D., Burgess B. K. A T14C variant of Azotobacter vinelandii ferredoxin I undergoes facile [3Fe-4S]0 to [4Fe-4S]2+ conversion in vitro but not in vivo. J Biol Chem. 1998 Dec 11;273(50):33692–33701. doi: 10.1074/jbc.273.50.33692. [DOI] [PubMed] [Google Scholar]
  17. George S. J., Armstrong F. A., Hatchikian E. C., Thomson A. J. Electrochemical and spectroscopic characterization of the conversion of the 7Fe into the 8Fe form of ferredoxin III from Desulfovibrio africanus. Identification of a [4Fe-4S] cluster with one non-cysteine ligand. Biochem J. 1989 Nov 15;264(1):275–284. doi: 10.1042/bj2640275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johnson M. K., Morningstar J. E., Bennett D. E., Ackrell B. A., Kearney E. B. Magnetic circular dichroism studies of succinate dehydrogenase. Evidence for [2Fe-2S], [3Fe-xS], and [4Fe-4S] centers in reconstitutively active enzyme. J Biol Chem. 1985 Jun 25;260(12):7368–7378. [PubMed] [Google Scholar]
  19. Johnson M. K., Morningstar J. E., Cecchini G., Ackrell B. A. In vivo detection of a three iron cluster in fumarate reductase from Escherichia coli. Biochem Biophys Res Commun. 1985 Sep 16;131(2):653–658. doi: 10.1016/0006-291x(85)91287-2. [DOI] [PubMed] [Google Scholar]
  20. Jung Y. S., Bonagura C. A., Tilley G. J., Gao-Sheridan H. S., Armstrong F. A., Stout C. D., Burgess B. K. Structure of C42D Azotobacter vinelandii FdI. A Cys-X-X-Asp-X-X-Cys motif ligates an air-stable [4Fe-4S]2+/+ cluster. J Biol Chem. 2000 Nov 24;275(47):36974–36983. doi: 10.1074/jbc.M004947200. [DOI] [PubMed] [Google Scholar]
  21. Kemper M. A., Gao-Sheridan H. S., Shen B., Duff J. L., Tilley G. J., Armstrong F. A., Burgess B. K. Delta T 14/Delta D 15 Azotobacter vinelandii ferredoxin I: creation of a new CysXXCysXXCys motif that ligates a [4Fe-4S] cluster. Biochemistry. 1998 Sep 15;37(37):12829–12837. doi: 10.1021/bi9810499. [DOI] [PubMed] [Google Scholar]
  22. Shen B., Martin L. L., Butt J. N., Armstrong F. A., Stout C. D., Jensen G. M., Stephens P. J., La Mar G. N., Gorst C. M., Burgess B. K. Azotobacter vinelandii ferredoxin I. Aspartate 15 facilitates proton transfer to the reduced [3Fe-4S] cluster. J Biol Chem. 1993 Dec 5;268(34):25928–25939. [PubMed] [Google Scholar]
  23. Soriano A., Li D., Bian S., Agarwal A., Cowan J. A. Factors influencing redox thermodynamics and electron self-exchange for the [Fe4S4] cluster in Chromatium vinosum high potential iron protein: the role of core aromatic residues in defining cluster redox chemistry. Biochemistry. 1996 Sep 24;35(38):12479–12486. doi: 10.1021/bi960974x. [DOI] [PubMed] [Google Scholar]
  24. Stephens P. J., Morgan T. V., Devlin F., Penner-Hahn J. E., Hodgson K. O., Scott R. A., Stout C. D., Burgess B. K. [4Fe-4S]-cluster-depleted Azotobacter vinelandii ferredoxin I: a new 3Fe iron-sulfur protein. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5661–5665. doi: 10.1073/pnas.82.17.5661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Teixeira M., Moura I., Xavier A. V., Dervartanian D. V., Legall J., Peck H. D., Jr, Huynh B. H., Moura J. J. Desulfovibrio Gigas hydrogenase: redox properties of the nickel and iron-sulfur centers. Eur J Biochem. 1983 Feb 15;130(3):481–484. doi: 10.1111/j.1432-1033.1983.tb07175.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES