Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Dec 15;360(Pt 3):727–736. doi: 10.1042/0264-6021:3600727

Alpha-retaining glucosyl transfer catalysed by trehalose phosphorylase from Schizophyllum commune: mechanistic evidence obtained from steady-state kinetic studies with substrate analogues and inhibitors.

B Nidetzky 1, C Eis 1
PMCID: PMC1222278  PMID: 11736665

Abstract

Fungal trehalose phosphorylase is classified as a family 4 glucosyltransferase that catalyses the reversible phosphorolysis of alpha,alpha-trehalose with net retention of anomeric configuration. Glucosyl transfer to and from phosphate takes place by the partly rate-limiting interconversion of ternary enzyme-substrate complexes formed from binary enzyme-phosphate and enzyme-alpha-d-glucopyranosyl phosphate adducts respectively. To advance a model of the chemical mechanism of trehalose phosphorylase, we performed a steady-state kinetic study with the purified enzyme from the basidiomycete fungus Schizophyllum commune by using alternative substrates, inhibitors and combinations thereof in pairs as specific probes of substrate-binding recognition and transition-state structure. Orthovanadate is a competitive inhibitor against phosphate and alpha-d-glucopyranosyl phosphate, and binds 3 x 10(4)-fold tighter (K(i) approximately 1 microM) than phosphate. Structural alterations of d-glucose at C-2 and O-5 are tolerated by the enzyme at subsite +1. They lead to parallel effects of approximately the same magnitude (slope=1.14; r(2)=0.98) on the reciprocal catalytic efficiency for reverse glucosyl transfer [log (K(m)/k(cat))] and the apparent affinity of orthovanadate determined in the presence of the respective glucosyl acceptor (log K(i)). An adduct of orthovanadate and the nucleophile/leaving group bound at subsite +1 is therefore the true inhibitor and displays partial transition state analogy. Isofagomine binds to subsite -1 in the enzyme-phosphate complex with a dissociation constant of 56 microM and inhibits trehalose phosphorylase at least 20-fold better than 1-deoxynojirimycin. The specificity of the reversible azasugars inhibitors would be explained if a positive charge developed on C-1 rather than O-5 in the proposed glucosyl cation-like transition state of the reaction. The results are discussed in the context of alpha-retaining glucosyltransferase mechanisms that occur with and without a beta-glucosyl enzyme intermediate.

Full Text

The Full Text of this article is available as a PDF (188.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Campbell J. A., Davies G. J., Bulone V., Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J. 1997 Sep 15;326(Pt 3):929–939. doi: 10.1042/bj3260929u. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Charnock S. J., Davies G. J. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry. 1999 May 18;38(20):6380–6385. doi: 10.1021/bi990270y. [DOI] [PubMed] [Google Scholar]
  3. Davies G. J. Sweet secrets of synthesis. Nat Struct Biol. 2001 Feb;8(2):98–100. doi: 10.1038/84198. [DOI] [PubMed] [Google Scholar]
  4. Dax K., Albert M., Ortner J., Paul B. J. Synthesis of deoxyfluoro sugars from carbohydrate precursors. Carbohydr Res. 2000 Jul 10;327(1-2):47–86. doi: 10.1016/s0008-6215(00)00022-7. [DOI] [PubMed] [Google Scholar]
  5. Dong W., Jespersen T., Bols M., Skrydstrup T., Sierks M. R. Evaluation of isofagomine and its derivatives as potent glycosidase inhibitors. Biochemistry. 1996 Feb 27;35(8):2788–2795. doi: 10.1021/bi9522514. [DOI] [PubMed] [Google Scholar]
  6. Eis C., Albert M., Dax K., Nidetzky B. The stereochemical course of the reaction mechanism of trehalose phosphorylase from Schizophyllum commune. FEBS Lett. 1998 Dec 4;440(3):440–443. doi: 10.1016/s0014-5793(98)01504-x. [DOI] [PubMed] [Google Scholar]
  7. Eis C., Nidetzky B. Characterization of trehalose phosphorylase from Schizophyllum commune. Biochem J. 1999 Jul 15;341(Pt 2):385–393. [PMC free article] [PubMed] [Google Scholar]
  8. Eis C., Watkins M., Prohaska T., Nidetzky B. Fungal trehalose phosphorylase: kinetic mechanism, pH-dependence of the reaction and some structural properties of the enzyme from Schizophyllum commune. Biochem J. 2001 Jun 15;356(Pt 3):757–767. doi: 10.1042/0264-6021:3560757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fedorov A., Shi W., Kicska G., Fedorov E., Tyler P. C., Furneaux R. H., Hanson J. C., Gainsford G. J., Larese J. Z., Schramm V. L. Transition state structure of purine nucleoside phosphorylase and principles of atomic motion in enzymatic catalysis. Biochemistry. 2001 Jan 30;40(4):853–860. doi: 10.1021/bi002499f. [DOI] [PubMed] [Google Scholar]
  10. Gastinel L. N., Bignon C., Misra A. K., Hindsgaul O., Shaper J. H., Joziasse D. H. Bovine alpha1,3-galactosyltransferase catalytic domain structure and its relationship with ABO histo-blood group and glycosphingolipid glycosyltransferases. EMBO J. 2001 Feb 15;20(4):638–649. doi: 10.1093/emboj/20.4.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gastinel L. N., Cambillau C., Bourne Y. Crystal structures of the bovine beta4galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose. EMBO J. 1999 Jul 1;18(13):3546–3557. doi: 10.1093/emboj/18.13.3546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Henrissat B., Davies G. J. Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol. 2000 Dec;124(4):1515–1519. doi: 10.1104/pp.124.4.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Héroux A., White E. L., Ross L. J., Kuzin A. P., Borhani D. W. Substrate deformation in a hypoxanthine-guanine phosphoribosyltransferase ternary complex: the structural basis for catalysis. Structure. 2000 Dec 15;8(12):1309–1318. doi: 10.1016/s0969-2126(00)00546-3. [DOI] [PubMed] [Google Scholar]
  14. Liu H., Liang X., Søhoel H., Bülow A., Bols M. Noeuromycin, a glycosyl cation mimic that strongly inhibits glycosidases. J Am Chem Soc. 2001 May 30;123(21):5116–5117. doi: 10.1021/ja010240u. [DOI] [PubMed] [Google Scholar]
  15. Ly H. D., Withers S. G. Mutagenesis of glycosidases. Annu Rev Biochem. 1999;68:487–522. doi: 10.1146/annurev.biochem.68.1.487. [DOI] [PubMed] [Google Scholar]
  16. Mader Mary M., Bartlett Paul A. Binding Energy and Catalysis: The Implications for Transition-State Analogs and Catalytic Antibodies. Chem Rev. 1997 Aug 5;97(5):1281–1302. doi: 10.1021/cr960435y. [DOI] [PubMed] [Google Scholar]
  17. Mark B. L., Vocadlo D. J., Zhao D., Knapp S., Withers S. G., James M. N. Biochemical and structural assessment of the 1-N-azasugar GalNAc-isofagomine as a potent family 20 beta-N-acetylhexosaminidase inhibitor. J Biol Chem. 2001 Aug 24;276(45):42131–42137. doi: 10.1074/jbc.M107154200. [DOI] [PubMed] [Google Scholar]
  18. Mitchell E. P., Withers S. G., Ermert P., Vasella A. T., Garman E. F., Oikonomakos N. G., Johnson L. N. Ternary complex crystal structures of glycogen phosphorylase with the transition state analogue nojirimycin tetrazole and phosphate in the T and R states. Biochemistry. 1996 Jun 11;35(23):7341–7355. doi: 10.1021/bi960072w. [DOI] [PubMed] [Google Scholar]
  19. Mosi R., Sham H., Uitdehaag J. C., Ruiterkamp R., Dijkstra B. W., Withers S. G. Reassessment of acarbose as a transition state analogue inhibitor of cyclodextrin glycosyltransferase. Biochemistry. 1998 Dec 8;37(49):17192–17198. doi: 10.1021/bi981109a. [DOI] [PubMed] [Google Scholar]
  20. Mosi R., Withers S. G. Synthesis and kinetic evaluation of 4-deoxymaltopentaose and 4-deoxymaltohexaose as inhibitors of muscle and potato alpha-glucan phosphorylases. Biochem J. 1999 Mar 1;338(Pt 2):251–256. [PMC free article] [PubMed] [Google Scholar]
  21. Mulichak A. M., Losey H. C., Walsh C. T., Garavito R. M. Structure of the UDP-glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics. Structure. 2001 Jul 3;9(7):547–557. doi: 10.1016/s0969-2126(01)00616-5. [DOI] [PubMed] [Google Scholar]
  22. Palm D., Klein H. W., Schinzel R., Buehner M., Helmreich E. J. The role of pyridoxal 5'-phosphate in glycogen phosphorylase catalysis. Biochemistry. 1990 Feb 6;29(5):1099–1107. doi: 10.1021/bi00457a001. [DOI] [PubMed] [Google Scholar]
  23. Percival M. D., Doherty K., Gresser M. J. Inhibition of phosphoglucomutase by vanadate. Biochemistry. 1990 Mar 20;29(11):2764–2769. doi: 10.1021/bi00463a020. [DOI] [PubMed] [Google Scholar]
  24. Persson K., Ly H. D., Dieckelmann M., Wakarchuk W. W., Withers S. G., Strynadka N. C. Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nat Struct Biol. 2001 Feb;8(2):166–175. doi: 10.1038/84168. [DOI] [PubMed] [Google Scholar]
  25. Ray W. J., Jr, Puvathingal J. M. Characterization of a vanadate-based transition-state-analogue complex of phosphoglucomutase by kinetic and equilibrium binding studies. Mechanistic implications. Biochemistry. 1990 Mar 20;29(11):2790–2801. doi: 10.1021/bi00463a023. [DOI] [PubMed] [Google Scholar]
  26. Street I. P., Armstrong C. R., Withers S. G. Hydrogen bonding and specificity. Fluorodeoxy sugars as probes of hydrogen bonding in the glycogen phosphorylase-glucose complex. Biochemistry. 1986 Oct 7;25(20):6021–6027. doi: 10.1021/bi00368a028. [DOI] [PubMed] [Google Scholar]
  27. Takayama S., Chung S. J., Igarashi Y., Ichikawa Y., Sepp A., Lechler R. I., Wu J., Hayashi T., Siuzdak G., Wong C. H. Selective inhibition of beta-1,4- and alpha-1,3-galactosyltransferases: donor sugar-nucleotide based approach. Bioorg Med Chem. 1999 Feb;7(2):401–409. doi: 10.1016/s0968-0896(98)00249-1. [DOI] [PubMed] [Google Scholar]
  28. Unligil U. M., Rini J. M. Glycosyltransferase structure and mechanism. Curr Opin Struct Biol. 2000 Oct;10(5):510–517. doi: 10.1016/s0959-440x(00)00124-x. [DOI] [PubMed] [Google Scholar]
  29. Unligil U. M., Zhou S., Yuwaraj S., Sarkar M., Schachter H., Rini J. M. X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. EMBO J. 2000 Oct 16;19(20):5269–5280. doi: 10.1093/emboj/19.20.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vocadlo D. J., Davies G. J., Laine R., Withers S. G. Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature. 2001 Aug 23;412(6849):835–838. doi: 10.1038/35090602. [DOI] [PubMed] [Google Scholar]
  31. Watson K. A., McCleverty C., Geremia S., Cottaz S., Driguez H., Johnson L. N. Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question. EMBO J. 1999 Sep 1;18(17):4619–4632. doi: 10.1093/emboj/18.17.4619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yonetani T. The Yonetani-Theorell graphical method for examining overlapping subsites of enzyme active centers. Methods Enzymol. 1982;87:500–509. doi: 10.1016/s0076-6879(82)87028-6. [DOI] [PubMed] [Google Scholar]
  33. Zechel D. L., Withers S. G. Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc Chem Res. 2000 Jan;33(1):11–18. doi: 10.1021/ar970172+. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES