Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jan 1;361(Pt 1):57–66. doi: 10.1042/0264-6021:3610057

Cytochrome c catalyses the formation of pentyl radical and octanoic acid radical from linoleic acid hydroperoxide.

Hideo Iwahashi 1, Koji Nishizaki 1, Ichiro Takagi 1
PMCID: PMC1222279  PMID: 11742529

Abstract

A reaction of 13-hydroperoxide octadecadienoic acid (13-HPODE) with cytochrome c was analysed using ESR, HPLC-ESR and HPLC-ESR-MS by the combined use of the spin-trapping technique. The ESR, HPLC-ESR and HPLC-ESR-MS analyses showed that cytochrome c catalyses formation of pentyl and octanoic acid radicals from 13-HPODE. On the other hand, only the alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone/octanoic acid radical adduct was detected in the elution profile of HPLC-ESR for a mixture of 13-HPODE with haematin, indicating that haematin catalyses the formation of octanoic acid radical. In addition, the reaction of 13-HPODE with cytochrome c was inhibited by chlorogenic acid, caffeic acid and ferulic acid via two possible mechanisms, i.e. reducing cytochrome c (chlorogenic acid and caffeic acid) and scavenging the radical intermediates (chlorogenic acid, caffeic acid and ferulic acid).

Full Text

The Full Text of this article is available as a PDF (227.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akaike T., Sato K., Ijiri S., Miyamoto Y., Kohno M., Ando M., Maeda H. Bactericidal activity of alkyl peroxyl radicals generated by heme-iron-catalyzed decomposition of organic peroxides. Arch Biochem Biophys. 1992 Apr;294(1):55–63. doi: 10.1016/0003-9861(92)90136-k. [DOI] [PubMed] [Google Scholar]
  2. Barr D. P., Mason R. P. Mechanism of radical production from the reaction of cytochrome c with organic hydroperoxides. An ESR spin trapping investigation. J Biol Chem. 1995 May 26;270(21):12709–12716. doi: 10.1074/jbc.270.21.12709. [DOI] [PubMed] [Google Scholar]
  3. Chamulitrat W., Hughes M. F., Eling T. E., Mason R. P. Superoxide and peroxyl radical generation from the reduction of polyunsaturated fatty acid hydroperoxides by soybean lipoxygenase. Arch Biochem Biophys. 1991 Oct;290(1):153–159. doi: 10.1016/0003-9861(91)90601-e. [DOI] [PubMed] [Google Scholar]
  4. Chamulitrat W., Mason R. P. Alkyl free radicals from the beta-scission of fatty acid alkoxyl radicals as detected by spin trapping in a lipoxygenase system. Arch Biochem Biophys. 1990 Oct;282(1):65–69. doi: 10.1016/0003-9861(90)90087-f. [DOI] [PubMed] [Google Scholar]
  5. Correia M. A., Yao K., Allentoff A. J., Wrighton S. A., Thompson J. A. Interactions of peroxyquinols with cytochromes P450 2B1, 3A1, and 3A5: influence of the apoprotein on heterolytic versus homolytic O-O bond cleavage. Arch Biochem Biophys. 1995 Mar 10;317(2):471–478. doi: 10.1006/abbi.1995.1190. [DOI] [PubMed] [Google Scholar]
  6. Davies M. J. Detection of peroxyl and alkoxyl radicals produced by reaction of hydroperoxides with heme-proteins by electron spin resonance spectroscopy. Biochim Biophys Acta. 1988 Jan 12;964(1):28–35. doi: 10.1016/0304-4165(88)90063-3. [DOI] [PubMed] [Google Scholar]
  7. Davies M. J., Slater T. F. Studies on the metal-ion and lipoxygenase-catalysed breakdown of hydroperoxides using electron-spin-resonance spectroscopy. Biochem J. 1987 Jul 1;245(1):167–173. doi: 10.1042/bj2450167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dikalov S. I., Mason R. P. Reassignment of organic peroxyl radical adducts. Free Radic Biol Med. 1999 Oct;27(7-8):864–872. doi: 10.1016/s0891-5849(99)00134-3. [DOI] [PubMed] [Google Scholar]
  9. Dix T. A., Marnett L. J. Conversion of linoleic acid hydroperoxide to hydroxy, keto, epoxyhydroxy, and trihydroxy fatty acids by hematin. J Biol Chem. 1985 May 10;260(9):5351–5357. [PubMed] [Google Scholar]
  10. GEORGE P., TSOU C. L. Reaction between hydrocyanic acid, cyanide ion and ferricytochrome c. Biochem J. 1952 Feb;50(4):440–448. doi: 10.1042/bj0500440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Garssen G. J., Vliegenthart J. F., Boldingh J. An anaerobic reaction between lipoxygenase, linoleic acid and its hydroperoxides. Biochem J. 1971 Apr;122(3):327–332. doi: 10.1042/bj1220327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Iwahashi H., Albro P. W., McGown S. R., Tomer K. B., Mason R. P. Isolation and identification of alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone radical adducts formed by the decomposition of the hydroperoxides of linoleic acid, linolenic acid, and arachidonic acid by soybean lipoxygenase. Arch Biochem Biophys. 1991 Feb 15;285(1):172–180. doi: 10.1016/0003-9861(91)90346-k. [DOI] [PubMed] [Google Scholar]
  13. Iwahashi H., Deterding L. J., Parker C. E., Mason R. P., Tomer K. B. Identification of radical adducts formed in the reactions of unsaturated fatty acids with soybean lipoxygenase using continuous flow fast atom bombardment with tandem mass spectrometry. Free Radic Res. 1996 Sep;25(3):255–274. doi: 10.3109/10715769609149051. [DOI] [PubMed] [Google Scholar]
  14. Iwahashi H., Parker C. E., Mason R. P., Tomer K. B. Combined liquid chromatography/electron paramagnetic resonance spectrometry/electrospray ionization mass spectrometry for radical identification. Anal Chem. 1992 Oct 1;64(19):2244–2252. doi: 10.1021/ac00043a011. [DOI] [PubMed] [Google Scholar]
  15. Iwahashi H., Parker C. E., Mason R. P., Tomer K. B. Radical adducts of nitrosobenzene and 2-methyl-2-nitrosopropane with 12,13-epoxylinoleic acid radical, 12,13-epoxylinolenic acid radical and 14,15-epoxyarachidonic acid radical. Identification by h.p.l.c.-e.p.r. and liquid chromatography-thermospray-m.s. Biochem J. 1991 Jun 1;276(Pt 2):447–453. doi: 10.1042/bj2760447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Iwahashi H. Some polyphenols inhibit the formation of pentyl radical and octanoic acid radical in the reaction mixture of linoleic acid hydroperoxide with ferrous ions. Biochem J. 2000 Mar 1;346(Pt 2):265–273. [PMC free article] [PubMed] [Google Scholar]
  17. Kalyanaraman B., Mottley C., Mason R. P. A direct electron spin resonance and spin-trapping investigation of peroxyl free radical formation by hematin/hydroperoxide systems. J Biol Chem. 1983 Mar 25;258(6):3855–3858. [PubMed] [Google Scholar]
  18. Kaschnitz R. M., Hatefi Y. Lipid oxidation in biological membranes. Electron transfer proteins as initiators of lipid autoxidation. Arch Biochem Biophys. 1975 Nov;171(1):292–304. doi: 10.1016/0003-9861(75)90036-3. [DOI] [PubMed] [Google Scholar]
  19. Kennedy C. H., Church D. F., Winston G. W., Pryor W. A. tert-Butyl hydroperoxide-induced radical production in rat liver mitochondria. Free Radic Biol Med. 1992;12(5):381–387. doi: 10.1016/0891-5849(92)90087-w. [DOI] [PubMed] [Google Scholar]
  20. Lindstrom T. D., Aust S. D. Studies on cytochrome P-450-dependent lipid hydroperoxide reduction. Arch Biochem Biophys. 1984 Aug 15;233(1):80–87. doi: 10.1016/0003-9861(84)90603-9. [DOI] [PubMed] [Google Scholar]
  21. Radi R., Turrens J. F., Freeman B. A. Cytochrome c-catalyzed membrane lipid peroxidation by hydrogen peroxide. Arch Biochem Biophys. 1991 Jul;288(1):118–125. doi: 10.1016/0003-9861(91)90172-f. [DOI] [PubMed] [Google Scholar]
  22. Rota C., Barr D. P., Martin M. V., Guengerich F. P., Tomasi A., Mason R. P. Detection of free radicals produced from the reaction of cytochrome P-450 with linoleic acid hydroperoxide. Biochem J. 1997 Dec 1;328(Pt 2):565–571. doi: 10.1042/bj3280565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schreiber J., Mason R. P., Eling T. E. Carbon-centered free radical intermediates in the hematin- and ram seminal vesicle-catalyzed decomposition of fatty acid hydroperoxides. Arch Biochem Biophys. 1986 Nov 15;251(1):17–24. doi: 10.1016/0003-9861(86)90046-9. [DOI] [PubMed] [Google Scholar]
  24. Shimizu T., Murakami Y., Hatano M. Glu318 and Thr319 mutations of cytochrome P450 1A2 remarkably enhance homolytic O-O cleavage of alkyl hydroperoxides. An optical absorption spectral study. J Biol Chem. 1994 May 6;269(18):13296–13304. [PubMed] [Google Scholar]
  25. TAPPEL A. L. The mechanism of the oxidation of unsaturated fatty acids catalyzed by hematin compounds. Arch Biochem Biophys. 1953 Jun;44(2):378–395. doi: 10.1016/0003-9861(53)90056-3. [DOI] [PubMed] [Google Scholar]
  26. TAPPEL A. L. Unsaturated lipide oxidation catalyzed by hematin compounds. J Biol Chem. 1955 Dec;217(2):721–733. [PubMed] [Google Scholar]
  27. Teng J. I., Smith L. L. High-performance liquid chromatography of linoleic acid hydroperoxides and their corresponding alcohol derivatives. J Chromatogr. 1985 Dec 27;350(2):445–451. doi: 10.1016/s0021-9673(01)93550-2. [DOI] [PubMed] [Google Scholar]
  28. de Groot J. J., Veldink G. A., Vliegenthart J. F., Boldingh J., Wever R., van Gelder B. F. Demonstration by EPR spectroscopy of the functional role of iron in soybean lipoxygenase-1. Biochim Biophys Acta. 1975 Jan 23;377(1):71–79. doi: 10.1016/0005-2744(75)90287-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES