Abstract
Under physiological conditions of weak intracellular Ca(2+) buffering (0.1 mM EGTA), the second messenger Ins(1,4,5)P(3) often fails to activate any detectable store-operated Ca(2+) current. However, it has been reported that the fungal metabolite adenophostin A [which has a severalfold higher affinity than Ins(1,4,5)P(3) for Ins(1,4,5)P(3) receptors] consistently activates the current under similar conditions. Here, whole-cell patch clamp experiments have been performed to examine how adenophostin A can activate the store-operated Ca(2+) current (I(CRAC)) in RBL-1 (rat basophilic leukaemia) cells. In a strong intracellular Ca(2+) buffer, saturating concentrations of adenophostin A activated I(CRAC) maximally and the current amplitude and kinetics were indistinguishable from those obtained with high concentrations of Ins(1,4,5)P(3). In a weak Ca(2+) buffer, adenophostin A consistently activated I(CRAC), but the current was submaximal. High concentrations of Ins(1,4,5)P(3) or the non-metabolizable analogue Ins(2,4,5)P(3) were largely ineffective under these conditions. The size of I(CRAC) to adenophostin A in weak Ca(2+) buffer could be significantly increased by either inhibiting sarcoplasmic/endoplasmic-reticulum Ca(2+)-ATPase ('SERCA') pumps with thapsi-gargin or enhancing mitochondrial Ca(2+) uptake, although blocking the mitochondrial Ca(2+) uniporter with Ruthenium Red did not suppress the activation of the current. Changing the levels of free ATP in the recording pipette did not enhance the size of I(CRAC) evoked by adenophostin A. We also examined two structurally distinct analogues of adenophostin A (manno-adenophostin and ribophostin), for which the affinities for the Ins(1,4,5)P(3) receptor are similar to that of Ins(1,4,5)P(3) in equilibrium binding experiments. Although these analogues were able to activate I(CRAC) to its maximal extent in strong buffer, ribophostin, but not manno-adenophostin, consistently activated the current in weak buffer. We conclude that adenophostin A and ribophostin are able to activate I(CRAC) in weak buffer through a mechanism that is quite distinct from that employed by Ins(1,4,5)P(3) and manno-adenophostin and is not related to equilibrium affinities.
Full Text
The Full Text of this article is available as a PDF (214.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adkins C. E., Morris S. A., De Smedt H., Sienaert I., Török K., Taylor C. W. Ca2+-calmodulin inhibits Ca2+ release mediated by type-1, -2 and -3 inositol trisphosphate receptors. Biochem J. 2000 Jan 15;345(Pt 2):357–363. [PMC free article] [PubMed] [Google Scholar]
- Adkins C. E., Wissing F., Potter B. V., Taylor C. W. Rapid activation and partial inactivation of inositol trisphosphate receptors by adenophostin A. Biochem J. 2000 Dec 15;352(Pt 3):929–933. [PMC free article] [PubMed] [Google Scholar]
- Bakowski D., Glitsch M. D., Parekh A. B. An examination of the secretion-like coupling model for the activation of the Ca2+ release-activated Ca2+ current I(CRAC) in RBL-1 cells. J Physiol. 2001 Apr 1;532(Pt 1):55–71. doi: 10.1111/j.1469-7793.2001.0055g.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bakowski D., Parekh A. B. Sarcoplasmic/endoplasmic-reticulum-Ca2+-ATPase-mediated Ca2+ reuptake, and not Ins(1,4,5)P3 receptor inactivation, prevents the activation of macroscopic Ca2+ release-activated Ca2+ current in the presence of physiological Ca2+ buffer in rat basophilic leukaemia-1 cells. Biochem J. 2001 Feb 1;353(Pt 3):561–567. doi: 10.1042/0264-6021:3530561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berridge M. J., Lipp P., Bootman M. D. Signal transduction. The calcium entry pas de deux. Science. 2000 Mar 3;287(5458):1604–1605. doi: 10.1126/science.287.5458.1604. [DOI] [PubMed] [Google Scholar]
- Broad L. M., Armstrong D. L., Putney J. W., Jr Role of the inositol 1,4,5-trisphosphate receptor in Ca(2+) feedback inhibition of calcium release-activated calcium current (I(crac)). J Biol Chem. 1999 Nov 12;274(46):32881–32888. doi: 10.1074/jbc.274.46.32881. [DOI] [PubMed] [Google Scholar]
- Colquhoun D., Sakmann B. Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J Physiol. 1985 Dec;369:501–557. doi: 10.1113/jphysiol.1985.sp015912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Correa V., Riley A. M., Shuto S., Horne G., Nerou E. P., Marwood R. D., Potter B. V., Taylor C. W. Structural determinants of adenophostin A activity at inositol trisphosphate receptors. Mol Pharmacol. 2001 May;59(5):1206–1215. doi: 10.1124/mol.59.5.1206. [DOI] [PubMed] [Google Scholar]
- Fierro L., Parekh A. B. Fast calcium-dependent inactivation of calcium release-activated calcium current (CRAC) in RBL-1 cells. J Membr Biol. 1999 Mar 1;168(1):9–17. doi: 10.1007/s002329900493. [DOI] [PubMed] [Google Scholar]
- Fierro L., Parekh A. B. Substantial depletion of the intracellular Ca2+ stores is required for macroscopic activation of the Ca2+ release-activated Ca2+ current in rat basophilic leukaemia cells. J Physiol. 2000 Jan 15;522(Pt 2):247–257. doi: 10.1111/j.1469-7793.2000.t01-1-00247.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilabert J. A., Bakowski D., Parekh A. B. Energized mitochondria increase the dynamic range over which inositol 1,4,5-trisphosphate activates store-operated calcium influx. EMBO J. 2001 Jun 1;20(11):2672–2679. doi: 10.1093/emboj/20.11.2672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glitsch M. D., Parekh A. B. Ca2+ store dynamics determines the pattern of activation of the store-operated Ca2+ current I(CRAC) in response to InsP3 in rat basophilic leukaemia cells. J Physiol. 2000 Mar 1;523(Pt 2):283–290. doi: 10.1111/j.1469-7793.2000.t01-2-00283.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- He C. L., Damiani P., Ducibella T., Takahashi M., Tanzawa K., Parys J. B., Fissore R. A. Isoforms of the inositol 1,4,5-trisphosphate receptor are expressed in bovine oocytes and ovaries: the type-1 isoform is down-regulated by fertilization and by injection of adenophostin A. Biol Reprod. 1999 Oct;61(4):935–943. doi: 10.1095/biolreprod61.4.935. [DOI] [PubMed] [Google Scholar]
- Hirota J., Michikawa T., Miyawaki A., Takahashi M., Tanzawa K., Okura I., Furuichi T., Mikoshiba K. Adenophostin-medicated quantal Ca2+ release in the purified and reconstituted inositol 1,4,5-trisphosphate receptor type 1. FEBS Lett. 1995 Jul 17;368(2):248–252. doi: 10.1016/0014-5793(95)00659-w. [DOI] [PubMed] [Google Scholar]
- Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
- Huang Y., Takahashi M., Tanzawa K., Putney J. W., Jr Effect of adenophostin A on Ca2+ entry and calcium release-activated calcium current (Icrac) in rat basophilic leukemia cells. J Biol Chem. 1998 Nov 27;273(48):31815–31821. doi: 10.1074/jbc.273.48.31815. [DOI] [PubMed] [Google Scholar]
- Joseph S. K., Lin C., Pierson S., Thomas A. P., Maranto A. R. Heteroligomers of type-I and type-III inositol trisphosphate receptors in WB rat liver epithelial cells. J Biol Chem. 1995 Oct 6;270(40):23310–23316. doi: 10.1074/jbc.270.40.23310. [DOI] [PubMed] [Google Scholar]
- Kiselyov K., Xu X., Mozhayeva G., Kuo T., Pessah I., Mignery G., Zhu X., Birnbaumer L., Muallem S. Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature. 1998 Dec 3;396(6710):478–482. doi: 10.1038/24890. [DOI] [PubMed] [Google Scholar]
- Mak D. O., McBride S., Foskett J. K. ATP-dependent adenophostin activation of inositol 1,4,5-trisphosphate receptor channel gating: kinetic implications for the durations of calcium puffs in cells. J Gen Physiol. 2001 Apr;117(4):299–314. doi: 10.1085/jgp.117.4.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oancea E., Meyer T. Reversible desensitization of inositol trisphosphate-induced calcium release provides a mechanism for repetitive calcium spikes. J Biol Chem. 1996 Jul 19;271(29):17253–17260. doi: 10.1074/jbc.271.29.17253. [DOI] [PubMed] [Google Scholar]
- Parekh A. B., Fleig A., Penner R. The store-operated calcium current I(CRAC): nonlinear activation by InsP3 and dissociation from calcium release. Cell. 1997 Jun 13;89(6):973–980. doi: 10.1016/s0092-8674(00)80282-2. [DOI] [PubMed] [Google Scholar]
- Parekh A. B., Penner R. Store depletion and calcium influx. Physiol Rev. 1997 Oct;77(4):901–930. doi: 10.1152/physrev.1997.77.4.901. [DOI] [PubMed] [Google Scholar]
- Parys J. B., de Smedt H., Missiaen L., Bootman M. D., Sienaert I., Casteels R. Rat basophilic leukemia cells as model system for inositol 1,4,5-trisphosphate receptor IV, a receptor of the type II family: functional comparison and immunological detection. Cell Calcium. 1995 Apr;17(4):239–249. doi: 10.1016/0143-4160(95)90070-5. [DOI] [PubMed] [Google Scholar]
- Putney J. W., Jr A model for receptor-regulated calcium entry. Cell Calcium. 1986 Feb;7(1):1–12. doi: 10.1016/0143-4160(86)90026-6. [DOI] [PubMed] [Google Scholar]
- Putney J. W., Jr, McKay R. R. Capacitative calcium entry channels. Bioessays. 1999 Jan;21(1):38–46. doi: 10.1002/(SICI)1521-1878(199901)21:1<38::AID-BIES5>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
- Schroeder R., Waldsich C., Wank H. Modulation of RNA function by aminoglycoside antibiotics. EMBO J. 2000 Jan 4;19(1):1–9. doi: 10.1093/emboj/19.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shears S. B. Metabolism of inositol phosphates. Adv Second Messenger Phosphoprotein Res. 1992;26:63–92. [PubMed] [Google Scholar]
- Takahashi M., Tanzawa K., Takahashi S. Adenophostins, newly discovered metabolites of Penicillium brevicompactum, act as potent agonists of the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1994 Jan 7;269(1):369–372. [PubMed] [Google Scholar]
- Zweifach A., Lewis R. S. Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback. J Gen Physiol. 1995 Feb;105(2):209–226. doi: 10.1085/jgp.105.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]