Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jan 1;361(Pt 1):173–184. doi: 10.1042/0264-6021:3610173

Characterization of human cathepsin L promoter and identification of binding sites for NF-Y, Sp1 and Sp3 that are essential for its activity.

Didier Jean 1, Nathalie Guillaume 1, Raymond Frade 1
PMCID: PMC1222292  PMID: 11742542

Abstract

Cathepsin L is a cysteine protease whose overexpression in human melanoma cells increases their tumorigenicity and switches their phenotype from non-metastatic to highly metastatic. Regulation of the transcription of the gene encoding human cathepsin L has not been yet studied and only preliminary data exist on the promoter regulation of the gene encoding rodent cathepsin L. In the present study we identified molecular elements involved in the transcriptional regulation of human cathepsin L in melanoma cells. The sequence of the 5'-flanking region of the gene encoding human cathepsin L was determined up to 3263 bp upstream of the translation start site. The major transcription intiation site was located. Three mRNA splice variants, differing in their 5' untranslated ends, were identified. Regulatory regions crucial for cathepsin L promoter activity were characterized between -1489 and -1646 bp. In this region, two GC boxes (-1590/-1595 and -1545/-1550) and a CCAAT motif (-1571/-1575) were involved in specific DNA-protein interactions. An electrophoretic mobility-shift assay demonstrated that Sp1 and Sp3 transcription factors bound to these GC boxes, and only the transcription factor nuclear factor Y (NF-Y) bound to the CCAAT motif. Mutagenesis studies demonstrated that these binding sites contributed at least 85% of cathepsin L promoter activity. Thus structural and functional analysis demonstrated that binding sites for NF-Y, Sp1 and Sp3 are essential for transcription of the gene encoding human cathepsin L in melanoma cells.

Full Text

The Full Text of this article is available as a PDF (461.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chauhan S. S., Goldstein L. J., Gottesman M. M. Expression of cathepsin L in human tumors. Cancer Res. 1991 Mar 1;51(5):1478–1481. [PubMed] [Google Scholar]
  2. Chauhan S. S., Popescu N. C., Ray D., Fleischmann R., Gottesman M. M., Troen B. R. Cloning, genomic organization, and chromosomal localization of human cathepsin L. J Biol Chem. 1993 Jan 15;268(2):1039–1045. [PubMed] [Google Scholar]
  3. Felbor U., Dreier L., Bryant R. A., Ploegh H. L., Olsen B. R., Mothes W. Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J. 2000 Mar 15;19(6):1187–1194. doi: 10.1093/emboj/19.6.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Frade R., Rodrigues-Lima F., Huang S., Xie K., Guillaume N., Bar-Eli M. Procathepsin-L, a proteinase that cleaves human C3 (the third component of complement), confers high tumorigenic and metastatic properties to human melanoma cells. Cancer Res. 1998 Jul 1;58(13):2733–2736. [PubMed] [Google Scholar]
  5. Frade R. Structure and functions of proteases which cleave human C3 and are expressed on normal or tumor human cells: some are involved in tumorigenic and metastatic properties of human melanoma cells. Immunopharmacology. 1999 May;42(1-3):39–45. doi: 10.1016/s0162-3109(99)00028-4. [DOI] [PubMed] [Google Scholar]
  6. Gal S., Gottesman M. M. Isolation and sequence of a cDNA for human pro-(cathepsin L). Biochem J. 1988 Jul 1;253(1):303–306. doi: 10.1042/bj2530303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gal S., Gottesman M. M. The major excreted protein (MEP) of transformed mouse cells and cathepsin L have similar protease specificity. Biochem Biophys Res Commun. 1986 Aug 29;139(1):156–162. doi: 10.1016/s0006-291x(86)80093-6. [DOI] [PubMed] [Google Scholar]
  8. Gottesman M. M., Sobel M. E. Tumor promoters and Kirsten sarcoma virus increase synthesis of a secreted glycoprotein by regulating levels of translatable mRNA. Cell. 1980 Feb;19(2):449–455. doi: 10.1016/0092-8674(80)90519-x. [DOI] [PubMed] [Google Scholar]
  9. Ishidoh K., Kominami E. Gene regulation and extracellular functions of procathepsin L. Biol Chem. 1998 Feb;379(2):131–135. doi: 10.1515/bchm.1998.379.2.131. [DOI] [PubMed] [Google Scholar]
  10. Ishidoh K., Kominami E., Suzuki K., Katunuma N. Gene structure and 5'-upstream sequence of rat cathepsin L. FEBS Lett. 1989 Dec 18;259(1):71–74. doi: 10.1016/0014-5793(89)81497-8. [DOI] [PubMed] [Google Scholar]
  11. Ishidoh K., Taniguchi S., Kominami E. Egr family member proteins are involved in the activation of the cathepsin L gene in v-src-transformed cells. Biochem Biophys Res Commun. 1997 Sep 18;238(2):665–669. doi: 10.1006/bbrc.1997.7349. [DOI] [PubMed] [Google Scholar]
  12. Ishidoh K., Towatari T., Imajoh S., Kawasaki H., Kominami E., Katunuma N., Suzuki K. Molecular cloning and sequencing of cDNA for rat cathepsin L. FEBS Lett. 1987 Oct 19;223(1):69–73. doi: 10.1016/0014-5793(87)80511-2. [DOI] [PubMed] [Google Scholar]
  13. Jean D., Bar-Eli M., Huang S., Xie K., Rodrigues-Lima F., Hermann J., Frade R. A cysteine proteinase, which cleaves human C3, the third component of complement, is involved in tumorigenicity and metastasis of human melanoma. Cancer Res. 1996 Jan 15;56(2):254–258. [PubMed] [Google Scholar]
  14. Jean D., Hermann J., Rodrigues-Lima F., Barel M., Balbo M., Frade R. Identification on melanoma cells of p39, a cysteine proteinase that cleaves C3, the third component of complement: amino-acid-sequence identities with procathepsin L. Biochem J. 1995 Dec 15;312(Pt 3):961–969. doi: 10.1042/bj3120961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jean D., Rodrigues-Lima F., Cassinat B., Hermann J., Cabane J., Frade R. Co-expression and secretion of C3, the third component of complement and a C3-cleaving cysteine proteinase in a highly metastatic human melanoma cell line. Immunol Lett. 1997 Jul;58(2):107–112. doi: 10.1016/s0165-2478(97)00030-8. [DOI] [PubMed] [Google Scholar]
  16. Joseph L. J., Chang L. C., Stamenkovich D., Sukhatme V. P. Complete nucleotide and deduced amino acid sequences of human and murine preprocathepsin L. An abundant transcript induced by transformation of fibroblasts. J Clin Invest. 1988 May;81(5):1621–1629. doi: 10.1172/JCI113497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kirschke H., Eerola R., Hopsu-Havu V. K., Brömme D., Vuorio E. Antisense RNA inhibition of cathepsin L expression reduces tumorigenicity of malignant cells. Eur J Cancer. 2000 Apr;36(6):787–795. doi: 10.1016/s0959-8049(00)00014-9. [DOI] [PubMed] [Google Scholar]
  18. Kozlowski J. M., Hart I. R., Fidler I. J., Hanna N. A human melanoma line heterogeneous with respect to metastatic capacity in athymic nude mice. J Natl Cancer Inst. 1984 Apr;72(4):913–917. [PubMed] [Google Scholar]
  19. Li L., Price J. E., Fan D., Zhang R. D., Bucana C. D., Fidler I. J. Correlation of growth capacity of human tumor cells in hard agarose with their in vivo proliferative capacity at specific metastatic sites. J Natl Cancer Inst. 1989 Sep 20;81(18):1406–1412. doi: 10.1093/jnci/81.18.1406. [DOI] [PubMed] [Google Scholar]
  20. Maciewicz R. A., Wardale R. J., Etherington D. J., Paraskeva C. Immunodetection of cathepsins B and L present in and secreted from human pre-malignant and malignant colorectal tumour cell lines. Int J Cancer. 1989 Mar 15;43(3):478–486. doi: 10.1002/ijc.2910430323. [DOI] [PubMed] [Google Scholar]
  21. Maity S. N., de Crombrugghe B. Role of the CCAAT-binding protein CBF/NF-Y in transcription. Trends Biochem Sci. 1998 May;23(5):174–178. doi: 10.1016/s0968-0004(98)01201-8. [DOI] [PubMed] [Google Scholar]
  22. Mantovani R. A survey of 178 NF-Y binding CCAAT boxes. Nucleic Acids Res. 1998 Mar 1;26(5):1135–1143. doi: 10.1093/nar/26.5.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y. Gene. 1999 Oct 18;239(1):15–27. doi: 10.1016/s0378-1119(99)00368-6. [DOI] [PubMed] [Google Scholar]
  24. Park G. T., Morasso M. I. Regulation of the Dlx3 homeobox gene upon differentiation of mouse keratinocytes. J Biol Chem. 1999 Sep 10;274(37):26599–26608. doi: 10.1074/jbc.274.37.26599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rescheleit D. K., Rommerskirch W. J., Wiederanders B. Sequence analysis and distribution of two new human cathepsin L splice variants. FEBS Lett. 1996 Oct 7;394(3):345–348. doi: 10.1016/0014-5793(96)00986-6. [DOI] [PubMed] [Google Scholar]
  26. Roder K., Wolf S. S., Beck K. F., Schweizer M. Cooperative binding of NF-Y and Sp1 at the DNase I-hypersensitive site, fatty acid synthase insulin-responsive element 1, located at -500 in the rat fatty acid synthase promoter. J Biol Chem. 1997 Aug 22;272(34):21616–21624. doi: 10.1074/jbc.272.34.21616. [DOI] [PubMed] [Google Scholar]
  27. Roder K., Wolf S. S., Larkin K. J., Schweizer M. Interaction between the two ubiquitously expressed transcription factors NF-Y and Sp1. Gene. 1999 Jun 24;234(1):61–69. doi: 10.1016/s0378-1119(99)00180-8. [DOI] [PubMed] [Google Scholar]
  28. Rozhin J., Wade R. L., Honn K. V., Sloane B. F. Membrane-associated cathepsin L: a role in metastasis of melanomas. Biochem Biophys Res Commun. 1989 Oct 16;164(1):556–561. doi: 10.1016/0006-291x(89)91755-5. [DOI] [PubMed] [Google Scholar]
  29. Sinha S., Maity S. N., Lu J., de Crombrugghe B. Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1624–1628. doi: 10.1073/pnas.92.5.1624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Suske G. The Sp-family of transcription factors. Gene. 1999 Oct 1;238(2):291–300. doi: 10.1016/s0378-1119(99)00357-1. [DOI] [PubMed] [Google Scholar]
  31. Troen B. R., Ascherman D., Atlas D., Gottesman M. M. Cloning and expression of the gene for the major excreted protein of transformed mouse fibroblasts. A secreted lysosomal protease regulated by transformation. J Biol Chem. 1988 Jan 5;263(1):254–261. [PubMed] [Google Scholar]
  32. Troen B. R., Ascherman D., Atlas D., Gottesman M. M. Cloning and expression of the gene for the major excreted protein of transformed mouse fibroblasts. A secreted lysosomal protease regulated by transformation. J Biol Chem. 1988 Jan 5;263(1):254–261. [PubMed] [Google Scholar]
  33. Troen B. R., Chauhan S. S., Ray D., Gottesman M. M. Downstream sequences mediate induction of the mouse cathepsin L promoter by phorbol esters. Cell Growth Differ. 1991 Jan;2(1):23–31. [PubMed] [Google Scholar]
  34. Turk B., Turk D., Turk V. Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta. 2000 Mar 7;1477(1-2):98–111. doi: 10.1016/s0167-4838(99)00263-0. [DOI] [PubMed] [Google Scholar]
  35. Wright K. L., Moore T. L., Vilen B. J., Brown A. M., Ting J. P. Major histocompatibility complex class II-associated invariant chain gene expression is up-regulated by cooperative interactions of Sp1 and NF-Y. J Biol Chem. 1995 Sep 8;270(36):20978–20986. doi: 10.1074/jbc.270.36.20978. [DOI] [PubMed] [Google Scholar]
  36. Yamada K., Tanaka T., Miyamoto K., Noguchi T. Sp family members and nuclear factor-Y cooperatively stimulate transcription from the rat pyruvate kinase M gene distal promoter region via their direct interactions. J Biol Chem. 2000 Jun 16;275(24):18129–18137. doi: 10.1074/jbc.M001543200. [DOI] [PubMed] [Google Scholar]
  37. Zhang R. D., Price J. E., Schackert G., Itoh K., Fidler I. J. Malignant potential of cells isolated from lymph node or brain metastases of melanoma patients and implications for prognosis. Cancer Res. 1991 Apr 15;51(8):2029–2035. [PubMed] [Google Scholar]
  38. Zhong Z. D., Hammani K., Bae W. S., DeClerck Y. A. NF-Y and Sp1 cooperate for the transcriptional activation and cAMP response of human tissue inhibitor of metalloproteinases-2. J Biol Chem. 2000 Jun 16;275(24):18602–18610. doi: 10.1074/jbc.M001389200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES