Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jan 1;361(Pt 1):1–25. doi: 10.1042/0264-6021:3610001

Structural analyses reveal two distinct families of nucleoside phosphorylases.

Matthew J Pugmire 1, Steven E Ealick 1
PMCID: PMC1222293  PMID: 11743878

Abstract

The reversible phosphorolysis of purine and pyrimidine nucleosides is an important biochemical reaction in the salvage pathway, which provides an alternative to the de novo purine and pyrimidine biosynthetic pathways. Structural studies in our laboratory and by others have revealed that only two folds exist that catalyse the phosphorolysis of all nucleosides, and provide the basis for defining two families of nucleoside phosphorylases. The first family (nucleoside phosphorylase-I) includes enzymes that share a common single-domain subunit, with either a trimeric or a hexameric quaternary structure, and accept a range of both purine and pyrimidine nucleoside substrates. Despite differences in substrate specificity, amino acid sequence and quaternary structure, all members of this family share a characteristic subunit topology. We have also carried out a sequence motif study that identified regions of the common subunit fold that are functionally significant in differentiating the various members of the nucleoside phosphorylase-I family. Although the substrate-binding sites are arranged similarly for all members of the nucleoside phosphorylase-I family, a comparison of the active sites from the known structures of this family indicates significant differences between the trimeric and hexameric family members. Sequence comparisons also suggest structural identity between the nucleoside phosphorylase-I family and both 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase and AMP nucleosidase. Members of the second family of nucleoside phosphorylases (nucleoside phosphorylase-II) share a common two-domain subunit fold and a dimeric quaternary structure, share a significant level of sequence identity (>30%) and are specific for pyrimidine nucleosides. Members of this second family accept both thymidine and uridine substrates in lower organisms, but are specific for thymidine in mammals and other higher organisms. A possible relationship between nucleoside phosphorylase-II and anthranilate phosphoribosyltransferase has been identified through sequence comparisons. Initial studies in our laboratory suggested that members of the nucleoside phosphorylase-II family require significant domain movements in order for catalysis to proceed. A series of recent structures has confirmed our hypothesis and provided details of these conformational changes. Structural studies of the nucleoside phosphorylases have resulted in a wealth of information that begins to address fundamental biological questions, such as how Nature makes use of the intricate relationships between structure and function, and how biological processes have evolved over time. In addition, the therapeutic potential of suppressing the nucleoside phosphorylase activity in either family of enzymes has motivated efforts to design potent inhibitors. Several research groups have synthesized a variety of nucleoside phosphorylase inhibitors that are at various stages of preclinical and clinical evaluation.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Appleby T. C., Erion M. D., Ealick S. E. The structure of human 5'-deoxy-5'-methylthioadenosine phosphorylase at 1.7 A resolution provides insights into substrate binding and catalysis. Structure. 1999 Jun 15;7(6):629–641. doi: 10.1016/s0969-2126(99)80084-7. [DOI] [PubMed] [Google Scholar]
  3. Appleby T. C., Mathews I. I., Porcelli M., Cacciapuoti G., Ealick S. E. Three-dimensional structure of a hyperthermophilic 5'-deoxy-5'-methylthioadenosine phosphorylase from Sulfolobus solfataricus. J Biol Chem. 2001 Aug 6;276(42):39232–39242. doi: 10.1074/jbc.M105694200. [DOI] [PubMed] [Google Scholar]
  4. Asai K., Hirano T., Kaneko S., Moriyama A., Nakanishi K., Isobe I., Eksioglu Y. Z., Kato T. A novel glial growth inhibitory factor, gliostatin, derived from neurofibroma. J Neurochem. 1992 Jul;59(1):307–317. doi: 10.1111/j.1471-4159.1992.tb08905.x. [DOI] [PubMed] [Google Scholar]
  5. Avraham Y., Grossowicz N., Yashphe J. Purification and characterization of uridine and thymidine phosphorylase from Lactobacillus casei. Biochim Biophys Acta. 1990 Sep 3;1040(2):287–293. doi: 10.1016/0167-4838(90)90089-x. [DOI] [PubMed] [Google Scholar]
  6. Baker B. R., Kelley J. L. Irreversible enzyme inhibitors. 188. Inhibition of mammalian thymidine phosphorylase. J Med Chem. 1971 Sep;14(9):812–816. doi: 10.1021/jm00291a009. [DOI] [PubMed] [Google Scholar]
  7. Barton G. J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 1993 Jan;6(1):37–40. doi: 10.1093/protein/6.1.37. [DOI] [PubMed] [Google Scholar]
  8. Bennett L. L., Jr, Allan P. W., Noker P. E., Rose L. M., Niwas S., Montgomery J. A., Erion M. D. Purine nucleoside phosphorylase inhibitors: biochemical and pharmacological studies with 9-benzyl-9-deazaguanine and related compounds. J Pharmacol Exp Ther. 1993 Aug;266(2):707–714. [PubMed] [Google Scholar]
  9. Bzowska A., Kulikowska E., Shugar D. Properties of purine nucleoside phosphorylase (PNP) of mammalian and bacterial origin. Z Naturforsch C. 1990 Jan-Feb;45(1-2):59–70. doi: 10.1515/znc-1990-1-211. [DOI] [PubMed] [Google Scholar]
  10. Bzowska A., Luić M., Schröder W., Shugar D., Saenger W., Koellner G. Calf spleen purine nucleoside phosphorylase: purification, sequence and crystal structure of its complex with an N(7)-acycloguanosine inhibitor. FEBS Lett. 1995 Jul 3;367(3):214–218. doi: 10.1016/0014-5793(95)00540-p. [DOI] [PubMed] [Google Scholar]
  11. CONCHIE J., FINDLAY J., LEVVY G. A. Mammalian glycosidases; distribution in the body. Biochem J. 1959 Feb;71(2):318–325. doi: 10.1042/bj0710318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cacciapuoti G., Porcelli M., Bertoldo C., De Rosa M., Zappia V. Purification and characterization of extremely thermophilic and thermostable 5'-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus. Purine nucleoside phosphorylase activity and evidence for intersubunit disulfide bonds. J Biol Chem. 1994 Oct 7;269(40):24762–24769. [PubMed] [Google Scholar]
  13. Carlson J. D., Fischer A. G. Characterization of the active site of homogeneous thyroid purine nucleoside phosphorylase. Biochim Biophys Acta. 1979 Nov 9;571(1):21–34. doi: 10.1016/0005-2744(79)90221-3. [DOI] [PubMed] [Google Scholar]
  14. Cheong C. G., Escalante-Semerena J. C., Rayment I. The three-dimensional structures of nicotinate mononucleotide:5,6- dimethylbenzimidazole phosphoribosyltransferase (CobT) from Salmonella typhimurium complexed with 5,6-dimethybenzimidazole and its reaction products determined to 1.9 A resolution. Biochemistry. 1999 Dec 7;38(49):16125–16135. doi: 10.1021/bi991752c. [DOI] [PubMed] [Google Scholar]
  15. Cook W. J., Koszalka G. W., Hall W. W., Burns C. L., Ealick S. E. Crystallization and preliminary x-ray investigation of thymidine phosphorylase from Escherichia coli. J Biol Chem. 1987 Mar 15;262(8):3788–3789. [PubMed] [Google Scholar]
  16. Crawford I. P. Evolution of a biosynthetic pathway: the tryptophan paradigm. Annu Rev Microbiol. 1989;43:567–600. doi: 10.1146/annurev.mi.43.100189.003031. [DOI] [PubMed] [Google Scholar]
  17. Della Ragione F., Oliva A., Gragnaniello V., Russo G. L., Palumbo R., Zappia V. Physicochemical and immunological studies on mammalian 5'-deoxy-5'-methylthioadenosine phosphorylase. J Biol Chem. 1990 Apr 15;265(11):6241–6246. [PubMed] [Google Scholar]
  18. Desgranges C., Razaka G., Rabaud M., Bricaud H. Catabolism of thymidine in human blood platelets: purification and properties of thymidine phosphorylase. Biochim Biophys Acta. 1981 Jul 27;654(2):211–218. doi: 10.1016/0005-2787(81)90174-x. [DOI] [PubMed] [Google Scholar]
  19. Eads J. C., Ozturk D., Wexler T. B., Grubmeyer C., Sacchettini J. C. A new function for a common fold: the crystal structure of quinolinic acid phosphoribosyltransferase. Structure. 1997 Jan 15;5(1):47–58. doi: 10.1016/s0969-2126(97)00165-2. [DOI] [PubMed] [Google Scholar]
  20. Eads J. C., Scapin G., Xu Y., Grubmeyer C., Sacchettini J. C. The crystal structure of human hypoxanthine-guanine phosphoribosyltransferase with bound GMP. Cell. 1994 Jul 29;78(2):325–334. doi: 10.1016/0092-8674(94)90301-8. [DOI] [PubMed] [Google Scholar]
  21. Ealick S. E., Babu Y. S., Bugg C. E., Erion M. D., Guida W. C., Montgomery J. A., Secrist J. A., 3rd Application of crystallographic and modeling methods in the design of purine nucleoside phosphorylase inhibitors. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11540–11544. doi: 10.1073/pnas.88.24.11540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ealick S. E., Rule S. A., Carter D. C., Greenhough T. J., Babu Y. S., Cook W. J., Habash J., Helliwell J. R., Stoeckler J. D., Parks R. E., Jr Three-dimensional structure of human erythrocytic purine nucleoside phosphorylase at 3.2 A resolution. J Biol Chem. 1990 Jan 25;265(3):1812–1820. doi: 10.2210/pdb2pnp/pdb. [DOI] [PubMed] [Google Scholar]
  23. Edwards S. L., Kraut J., Xuong N., Ashford V., Halloran T. P., Mills S. E. Crystallization and purification of the enzyme anthranilate phosphoribosyl transferase. J Mol Biol. 1988 Sep 20;203(2):523–524. doi: 10.1016/0022-2836(88)90020-4. [DOI] [PubMed] [Google Scholar]
  24. Erion M. D., Niwas S., Rose J. D., Ananthan S., Allen M., Secrist J. A., 3rd, Babu Y. S., Bugg C. E., Guida W. C., Ealick S. E. Structure-based design of inhibitors of purine nucleoside phosphorylase. 3. 9-Arylmethyl derivatives of 9-deazaguanine substituted on the methylene group. J Med Chem. 1993 Nov 26;36(24):3771–3783. doi: 10.1021/jm00076a004. [DOI] [PubMed] [Google Scholar]
  25. Erion M. D., Stoeckler J. D., Guida W. C., Walter R. L., Ealick S. E. Purine nucleoside phosphorylase. 2. Catalytic mechanism. Biochemistry. 1997 Sep 30;36(39):11735–11748. doi: 10.1021/bi961970v. [DOI] [PubMed] [Google Scholar]
  26. Erion M. D., Takabayashi K., Smith H. B., Kessi J., Wagner S., Hönger S., Shames S. L., Ealick S. E. Purine nucleoside phosphorylase. 1. Structure-function studies. Biochemistry. 1997 Sep 30;36(39):11725–11734. doi: 10.1021/bi961969w. [DOI] [PubMed] [Google Scholar]
  27. FLAKS J. G., ERWIN M. J., BUCHANAN J. M. Biosynthesis of the purines. XVI. The synthesis of adenosine 5'-phosphate and 5-amino-4-imidazolecarboxamide ribotide by a nucleotide pyrophosphorylase. J Biol Chem. 1957 Sep;228(1):201–213. [PubMed] [Google Scholar]
  28. FRIEDKIN M., ROBERTS D. The enzymatic synthesis of nucleosides. I. Thymidine phosphorylase in mammalian tissue. J Biol Chem. 1954 Mar;207(1):245–256. [PubMed] [Google Scholar]
  29. FRIEDKIN M., ROBERTS D. The enzymatic synthesis of nucleosides. II. Thymidine and related pyrimidine nucleosides. J Biol Chem. 1954 Mar;207(1):257–266. [PubMed] [Google Scholar]
  30. FRIEDMIN M. Desoxyribose-1-phosphate. II. The isolation of crystalline desoxyribose-1-phosphate. J Biol Chem. 1950 Jun;184(2):449–459. [PubMed] [Google Scholar]
  31. Fedorov A., Shi W., Kicska G., Fedorov E., Tyler P. C., Furneaux R. H., Hanson J. C., Gainsford G. J., Larese J. Z., Schramm V. L. Transition state structure of purine nucleoside phosphorylase and principles of atomic motion in enzymatic catalysis. Biochemistry. 2001 Jan 30;40(4):853–860. doi: 10.1021/bi002499f. [DOI] [PubMed] [Google Scholar]
  32. Ferro A. J., Wrobel N. C., Nicolette J. A. 5-methylthioribose 1-phosphate: a product of partially purified, rat liver 5'-methylthioadenosine phosphorylase activity. Biochim Biophys Acta. 1979 Sep 12;570(1):65–73. doi: 10.1016/0005-2744(79)90201-8. [DOI] [PubMed] [Google Scholar]
  33. Fox S. B., Westwood M., Moghaddam A., Comley M., Turley H., Whitehouse R. M., Bicknell R., Gatter K. C., Harris A. L. The angiogenic factor platelet-derived endothelial cell growth factor/thymidine phosphorylase is up-regulated in breast cancer epithelium and endothelium. Br J Cancer. 1996 Feb;73(3):275–280. doi: 10.1038/bjc.1996.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Gallo R. C., Breitman T. R. The enzymatic mechanisms for deoxythymidine synthesis in human leukocytes. II. Comparison of deoxyribosyl donors. J Biol Chem. 1968 Oct 10;243(19):4936–4942. [PubMed] [Google Scholar]
  35. Garbers D. L. Demonstration of 5'-methylthioadenosine phosphorylase activity in various rat tissues. Some properties of the enzyme from rat lung. Biochim Biophys Acta. 1978 Mar 14;523(1):82–93. doi: 10.1016/0005-2744(78)90011-6. [DOI] [PubMed] [Google Scholar]
  36. Giblett E. R., Ammann A. J., Wara D. W., Sandman R., Diamond L. K. Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet. 1975 May 3;1(7914):1010–1013. doi: 10.1016/s0140-6736(75)91950-9. [DOI] [PubMed] [Google Scholar]
  37. Gilpin R. W., Sadoff H. L. Physical and catalytic properties of the purine nucleoside phosphorylases from cells and spores of Bacillus cereus T. J Biol Chem. 1971 Mar 10;246(5):1475–1480. [PubMed] [Google Scholar]
  38. Gopaul D. N., Meyer S. L., Degano M., Sacchettini J. C., Schramm V. L. Inosine-uridine nucleoside hydrolase from Crithidia fasciculata. Genetic characterization, crystallization, and identification of histidine 241 as a catalytic site residue. Biochemistry. 1996 May 14;35(19):5963–5970. doi: 10.1021/bi952998u. [DOI] [PubMed] [Google Scholar]
  39. Grundy W. N., Bailey T. L., Elkan C. P. ParaMEME: a parallel implementation and a web interface for a DNA and protein motif discovery tool. Comput Appl Biosci. 1996 Aug;12(4):303–310. doi: 10.1093/bioinformatics/12.4.303. [DOI] [PubMed] [Google Scholar]
  40. Guida W. C., Elliott R. D., Thomas H. J., Secrist J. A., 3rd, Babu Y. S., Bugg C. E., Erion M. D., Ealick S. E., Montgomery J. A. Structure-based design of inhibitors of purine nucleoside phosphorylase. 4. A study of phosphate mimics. J Med Chem. 1994 Apr 15;37(8):1109–1114. doi: 10.1021/jm00034a008. [DOI] [PubMed] [Google Scholar]
  41. HURWITZ J., HEPPEL L. A., HORECKER B. L. The enzymatic cleavage of adenylic acid to adenine and ribose 5-phosphate. J Biol Chem. 1957 May;226(1):525–540. [PubMed] [Google Scholar]
  42. Hamada A., Fukushima S., Saneyoshi M., Kawaguchi T., Nakano M. Inhibition of 5'-deoxy-5-fluorouridine phosphorolysis by acyclopyrimidinenucleosides in intestinal tissue homogenates. Biol Pharm Bull. 1995 Jan;18(1):172–175. doi: 10.1248/bpb.18.172. [DOI] [PubMed] [Google Scholar]
  43. Hamamoto T., Noguchi T., Midorikawa Y. Purification and characterization of purine nucleoside phosphorylase and pyrimidine nucleoside phosphorylase from Bacillus stearothermophilus TH 6-2. Biosci Biotechnol Biochem. 1996 Jul;60(7):1179–1180. doi: 10.1271/bbb.60.1179. [DOI] [PubMed] [Google Scholar]
  44. Hammer-Jespersen K., Munch-Petersen A., Schwartz M., Nygaard P. Induction of enzymes involed in the catabolism of deoxyribonucleosides and ribonucleosides in Escherichia coli K 12. Eur J Biochem. 1971 Apr 30;19(4):533–538. doi: 10.1111/j.1432-1033.1971.tb01345.x. [DOI] [PubMed] [Google Scholar]
  45. Hirota K., Sawada M., Sajiki H., Sako M. Synthesis of 6-aminouracils and pyrrolo[2,3-d]pyrimidine-2,4-diones and their inhibitory effect on thymidine phosphorylase. Nucleic Acids Symp Ser. 1997;(37):59–60. [PubMed] [Google Scholar]
  46. IMSANDE J., HANDLER P. Biosynthesis of diphosphopyridine nucleotide. III. Nicotinic acid mononucleotide pyrophos-phorylase. J Biol Chem. 1961 Feb;236:525–530. [PubMed] [Google Scholar]
  47. Iltzsch M. H., el Kouni M. H., Cha S. Kinetic studies of thymidine phosphorylase from mouse liver. Biochemistry. 1985 Nov 19;24(24):6799–6807. doi: 10.1021/bi00345a011. [DOI] [PubMed] [Google Scholar]
  48. Imada A., Igarasi S. Ribosyl and deoxyribosyl transfer by bacterial enzyme systems. J Bacteriol. 1967 Nov;94(5):1551–1559. doi: 10.1128/jb.94.5.1551-1559.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Jensen K. F., Nygaard P. Purine nucleoside phosphorylase from Escherichia coli and Salmonella typhimurium. Purification and some properties. Eur J Biochem. 1975 Feb 3;51(1):253–265. doi: 10.1111/j.1432-1033.1975.tb03925.x. [DOI] [PubMed] [Google Scholar]
  50. KRENITSKY T. A., BARCLAY M., JACQUEZ J. A. SPECIFICITY OF MOUSE URIDINE PHOSPHORYLASE. CHROMATOGRAPHY, PURIFICATION, AND PROPERTIES. J Biol Chem. 1964 Mar;239:805–812. [PubMed] [Google Scholar]
  51. KRENITSKY T. A., MELLORS J. W., BARCLAY R. K. PYRIMIDINE NUCLEOSIDASES. THEIR CLASSIFICATION AND RELATIONSHIP TO URIC ACID RIBONUCLEOSIDE PHOSPHORYLASE. J Biol Chem. 1965 Mar;240:1281–1286. [PubMed] [Google Scholar]
  52. Kelley J. L., McLean E. W., Crouch R. C., Averett D. R., Tuttle J. V. [[(Guaninylalkyl)phosphinico]methyl]phosphonic acids. Multisubstrate analogue inhibitors of human erythrocyte purine nucleoside phosphorylase. J Med Chem. 1995 Mar 17;38(6):1005–1014. doi: 10.1021/jm00006a020. [DOI] [PubMed] [Google Scholar]
  53. Kim B. K., Cha S., Parks R. E., Jr Purine nucleoside phosphorylase from human erythrocytes. I. Purification and properties. J Biol Chem. 1968 Apr 25;243(8):1763–1770. [PubMed] [Google Scholar]
  54. Kim B. K., Cha S., Parks R. E., Jr Purine nucleoside phosphorylase from human erythroyctes. II. Kinetic analysis and substrate-binding studies. J Biol Chem. 1968 Apr 25;243(8):1771–1776. [PubMed] [Google Scholar]
  55. Kirkwood J. M., Ensminger W., Rosowsky A., Papathanasopoulos N., Frei E., 3rd Comparison of pharmacokinetics of 5-fluorouracil and 5-fluorouracil with concurrent thymidine infusions in a Phase I trial. Cancer Res. 1980 Jan;40(1):107–113. [PubMed] [Google Scholar]
  56. Koellner G., Luić M., Shugar D., Saenger W., Bzowska A. Crystal structure of calf spleen purine nucleoside phosphorylase in a complex with hypoxanthine at 2.15 A resolution. J Mol Biol. 1997 Jan 17;265(2):202–216. doi: 10.1006/jmbi.1996.0730. [DOI] [PubMed] [Google Scholar]
  57. Koellner G., Luić M., Shugar D., Saenger W., Bzowska A. Crystal structure of the ternary complex of E. coli purine nucleoside phosphorylase with formycin B, a structural analogue of the substrate inosine, and phosphate (Sulphate) at 2.1 A resolution. J Mol Biol. 1998 Jul 3;280(1):153–166. doi: 10.1006/jmbi.1998.1799. [DOI] [PubMed] [Google Scholar]
  58. Kraut A., Yamada E. W. Cytoplsmic uridine phosphorylase of rat liver. Characterization and kinetics. J Biol Chem. 1971 Apr 10;246(7):2021–2030. [PubMed] [Google Scholar]
  59. Krenitsky T. A. Pentosyl transfer mechanisms of the mammalian nucleoside phosphorylases. J Biol Chem. 1968 Jun 10;243(11):2871–2875. [PubMed] [Google Scholar]
  60. Krenitsky T. A. Purine nucleoside phosphorylase: kinetics, mechanism, and specificity. Mol Pharmacol. 1967 Nov;3(6):526–536. [PubMed] [Google Scholar]
  61. Krenitsky T. A., Tuttle J. V. Correlation of substrate-stabilization patterns with proposed mechanisms for three nucleoside phosphorylases. Biochim Biophys Acta. 1982 May 3;703(2):247–249. doi: 10.1016/0167-4838(82)90055-3. [DOI] [PubMed] [Google Scholar]
  62. Krenitsky T. A., Tuttle J. V., Miller W. H., Moorman A. R., Orr G. F., Beauchamp L. Nucleotide analogue inhibitors of purine nucleoside phosphorylase. J Biol Chem. 1990 Feb 25;265(6):3066–3069. [PubMed] [Google Scholar]
  63. Krenitsky T. A. Uridine phosphorylase from Escherichia coli. Kinetic properties and mechanism. Biochim Biophys Acta. 1976 Apr 8;429(2):352–358. doi: 10.1016/0005-2744(76)90283-7. [DOI] [PubMed] [Google Scholar]
  64. LASTER L., BLAIR A. AN INTESTINAL PHOSPHORYLASE FOR URIC ACID RIBONUCLEOSIDE. J Biol Chem. 1963 Oct;238:3348–3357. [PubMed] [Google Scholar]
  65. Lee J. E., Cornell K. A., Riscoe M. K., Howell P. L. Structure of E. coli 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase reveals similarity to the purine nucleoside phosphorylases. Structure. 2001 Oct;9(10):941–953. doi: 10.1016/s0969-2126(01)00656-6. [DOI] [PubMed] [Google Scholar]
  66. Lee S. S., Giovanella B. C., Stehlin J. S., Jr, Brunn J. C. Regression of human tumors established in nude mice after continuous infusion of thymidine. Cancer Res. 1979 Aug;39(8):2928–2933. [PubMed] [Google Scholar]
  67. Lewis A. S., Glantz M. D. Bovine brain purine-nucleoside phosphorylase purification, characterization, and catalytic mechanism. Biochemistry. 1976 Oct 5;15(20):4451–4457. doi: 10.1021/bi00665a018. [DOI] [PubMed] [Google Scholar]
  68. Lewis A. S., Glantz M. D. Monomeric purine nucleoside phosphorylase from rabbit liver. Purification and characterization. J Biol Chem. 1976 Jan 25;251(2):407–413. [PubMed] [Google Scholar]
  69. Lewis A. S., Lowy B. A. Human erythrocyte purine nucleoside phosphorylase: molecular weight and physical properties. A Theorell-Chance catalytic mechanism. J Biol Chem. 1979 Oct 10;254(19):9927–9932. [PubMed] [Google Scholar]
  70. Luić M., Koellner G., Shugar D., Saenger W., Bzowska A. Calf spleen purine nucleoside phosphorylase: structure of its ternary complex with an N(7)-acycloguanosine inhibitor and a phosphate anion. Acta Crystallogr D Biol Crystallogr. 2001 Jan;57(Pt 1):30–36. doi: 10.1107/s0907444900014402. [DOI] [PubMed] [Google Scholar]
  71. Maehara Y., Sakaguchi Y., Kusumoto T., Kusumoto H., Sugimachi K. Species differences in substrate specificity of pyrimidine nucleoside phosphorylase. J Surg Oncol. 1989 Nov;42(3):184–186. doi: 10.1002/jso.2930420311. [DOI] [PubMed] [Google Scholar]
  72. Mao C., Cook W. J., Zhou M., Federov A. A., Almo S. C., Ealick S. E. Calf spleen purine nucleoside phosphorylase complexed with substrates and substrate analogues. Biochemistry. 1998 May 19;37(20):7135–7146. doi: 10.1021/bi9723919. [DOI] [PubMed] [Google Scholar]
  73. Mao C., Cook W. J., Zhou M., Koszalka G. W., Krenitsky T. A., Ealick S. E. The crystal structure of Escherichia coli purine nucleoside phosphorylase: a comparison with the human enzyme reveals a conserved topology. Structure. 1997 Oct 15;5(10):1373–1383. doi: 10.1016/s0969-2126(97)00287-6. [DOI] [PubMed] [Google Scholar]
  74. McIvor R. S., Wohlhueter R. M., Plagemann P. G. Uridine phosphorylase from Acholeplasma laidlawii: purification and kinetic properties. J Bacteriol. 1983 Oct;156(1):198–204. doi: 10.1128/jb.156.1.198-204.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Miles R. W., Tyler P. C., Furneaux R. H., Bagdassarian C. K., Schramm V. L. One-third-the-sites transition-state inhibitors for purine nucleoside phosphorylase. Biochemistry. 1998 Jun 16;37(24):8615–8621. doi: 10.1021/bi980658d. [DOI] [PubMed] [Google Scholar]
  76. Milman G., Anton D. L., Weber J. L. Chinese hamster purine-nucleoside phosphorylase: purification, structural, and catalytic properties. Biochemistry. 1976 Nov 16;15(23):4967–4973. doi: 10.1021/bi00668a004. [DOI] [PubMed] [Google Scholar]
  77. Miyadera K., Dohmae N., Takio K., Sumizawa T., Haraguchi M., Furukawa T., Yamada Y., Akiyama S. Structural characterization of thymidine phosphorylase purified from human placenta. Biochem Biophys Res Commun. 1995 Jul 26;212(3):1040–1045. doi: 10.1006/bbrc.1995.2074. [DOI] [PubMed] [Google Scholar]
  78. Miyazono K., Okabe T., Urabe A., Takaku F., Heldin C. H. Purification and properties of an endothelial cell growth factor from human platelets. J Biol Chem. 1987 Mar 25;262(9):4098–4103. [PubMed] [Google Scholar]
  79. Montgomery J. A., Niwas S., Rose J. D., Secrist J. A., 3rd, Babu Y. S., Bugg C. E., Erion M. D., Guida W. C., Ealick S. E. Structure-based design of inhibitors of purine nucleoside phosphorylase. 1. 9-(arylmethyl) derivatives of 9-deazaguanine. J Med Chem. 1993 Jan 8;36(1):55–69. doi: 10.1021/jm00053a008. [DOI] [PubMed] [Google Scholar]
  80. Montgomery J. A. Purine nucleoside phosphorylase: a target for drug design. Med Res Rev. 1993 May;13(3):209–228. doi: 10.1002/med.2610130302. [DOI] [PubMed] [Google Scholar]
  81. Morgunova EYu, Mikhailov A. M., Popov A. N., Blagova E. V., Smirnova E. A., Vainshtein B. K., Mao C., Armstrong Sh R., Ealick S. E., Komissarov A. A. Atomic structure at 2.5 A resolution of uridine phosphorylase from E. coli as refined in the monoclinic crystal lattice. FEBS Lett. 1995 Jun 26;367(2):183–187. doi: 10.1016/0014-5793(95)00489-v. [DOI] [PubMed] [Google Scholar]
  82. Mushegian A. R., Koonin E. V. Unexpected sequence similarity between nucleosidases and phosphoribosyltransferases of different specificity. Protein Sci. 1994 Jul;3(7):1081–1088. doi: 10.1002/pro.5560030711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Nakamura C. E., Chu S. H., Stoeckler J. D., Parks R. E., Jr Inhibition of purine nucleoside phosphorylase by 9-(phosphonoalkyl)hypoxanthines. Biochem Pharmacol. 1986 Jan 15;35(2):133–136. doi: 10.1016/0006-2952(86)90504-6. [DOI] [PubMed] [Google Scholar]
  84. Narayana S. V., Bugg C. E., Ealick S. E. Refined structure of purine nucleoside phosphorylase at 2.75 A resolution. Acta Crystallogr D Biol Crystallogr. 1997 Mar 1;53(Pt 2):131–142. doi: 10.1107/S0907444996012619. [DOI] [PubMed] [Google Scholar]
  85. Niedzwicki J. G., Chu S. H., el Kouni M. H., Rowe E. C., Cha S. 5-benzylacyclouridine and 5-benzyloxybenzylacyclouridine, potent inhibitors of uridine phosphorylase. Biochem Pharmacol. 1982 May 15;31(10):1857–1861. doi: 10.1016/0006-2952(82)90488-9. [DOI] [PubMed] [Google Scholar]
  86. Niedzwicki J. G., el Kouni M. H., Chu S. H., Cha S. Pyrimidine acyclonucleosides, inhibitors of uridine phosphorylase. Biochem Pharmacol. 1981 Aug 1;30(15):2097–2101. doi: 10.1016/0006-2952(81)90228-8. [DOI] [PubMed] [Google Scholar]
  87. Niedzwicki J. G., el Kouni M. H., Chu S. H., Cha S. Structure-activity relationship of ligands of the pyrimidine nucleoside phosphorylases. Biochem Pharmacol. 1983 Feb 1;32(3):399–415. doi: 10.1016/0006-2952(83)90517-8. [DOI] [PubMed] [Google Scholar]
  88. Olsen A. S., Milman G. Chinese hamster hypoxanthine-guanine phosphoribosyltransferase. Purification, structural, and catalytic properties. J Biol Chem. 1974 Jul 10;249(13):4030–4037. [PubMed] [Google Scholar]
  89. PAEGE L. M., SCHLENK F. Bacterial uracil riboside phosphorylase. Arch Biochem Biophys. 1952 Sep;40(1):42–49. doi: 10.1016/0003-9861(52)90071-4. [DOI] [PubMed] [Google Scholar]
  90. Patterson A. V., Zhang H., Moghaddam A., Bicknell R., Talbot D. C., Stratford I. J., Harris A. L. Increased sensitivity to the prodrug 5'-deoxy-5-fluorouridine and modulation of 5-fluoro-2'-deoxyuridine sensitivity in MCF-7 cells transfected with thymidine phosphorylase. Br J Cancer. 1995 Sep;72(3):669–675. doi: 10.1038/bjc.1995.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Phillips C. L., Ullman B., Brennan R. G., Hill C. P. Crystal structures of adenine phosphoribosyltransferase from Leishmania donovani. EMBO J. 1999 Jul 1;18(13):3533–3545. doi: 10.1093/emboj/18.13.3533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Porter D. J. Purine nucleoside phosphorylase. Kinetic mechanism of the enzyme from calf spleen. J Biol Chem. 1992 Apr 15;267(11):7342–7351. [PubMed] [Google Scholar]
  93. Pugmire M. J., Cook W. J., Jasanoff A., Walter M. R., Ealick S. E. Structural and theoretical studies suggest domain movement produces an active conformation of thymidine phosphorylase. J Mol Biol. 1998 Aug 14;281(2):285–299. doi: 10.1006/jmbi.1998.1941. [DOI] [PubMed] [Google Scholar]
  94. Pugmire M. J., Ealick S. E. The crystal structure of pyrimidine nucleoside phosphorylase in a closed conformation. Structure. 1998 Nov 15;6(11):1467–1479. doi: 10.1016/s0969-2126(98)00145-2. [DOI] [PubMed] [Google Scholar]
  95. RAZZELL W. E., KHORANA H. G. Purification and properties of a pyrimidine deoxyriboside phosphorylase from Escherichia coli. Biochim Biophys Acta. 1958 Jun;28(3):562–566. doi: 10.1016/0006-3002(58)90519-5. [DOI] [PubMed] [Google Scholar]
  96. Reiter H. Effect of thymidine on the survival of mice with EL4 tumors. Cancer Res. 1979 Dec;39(12):4856–4860. [PubMed] [Google Scholar]
  97. Rich K. C., Arnold W. J., Palella T., Fox I. H. Cellular immune deficiency with autoimmune hemolytic anemia in purine nucleoside phosphorylase deficiency. Am J Med. 1979 Jul;67(1):172–176. doi: 10.1016/0002-9343(79)90100-1. [DOI] [PubMed] [Google Scholar]
  98. SMITH E. L., KIMMEL J. R., BROWN D. M., THOMPSON E. O. Isolation and properties of a crystalline mercury derivative of a lysozyme from papaya latex. J Biol Chem. 1955 Jul;215(1):67–89. [PubMed] [Google Scholar]
  99. Scapin G., Grubmeyer C., Sacchettini J. C. Crystal structure of orotate phosphoribosyltransferase. Biochemistry. 1994 Feb 15;33(6):1287–1294. doi: 10.1021/bi00172a001. [DOI] [PubMed] [Google Scholar]
  100. Schumacher M. A., Carter D., Scott D. M., Roos D. S., Ullman B., Brennan R. G. Crystal structures of Toxoplasma gondii uracil phosphoribosyltransferase reveal the atomic basis of pyrimidine discrimination and prodrug binding. EMBO J. 1998 Jun 15;17(12):3219–3232. doi: 10.1093/emboj/17.12.3219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Schwartz E. L., Baptiste N., Megati S., Wadler S., Otter B. A. 5-Ethoxy-2'-deoxyuridine, a novel substrate for thymidine phosphorylase, potentiates the antitumor activity of 5-fluorouracil when used in combination with interferon, an inducer of thymidine phosphorylase expression. Cancer Res. 1995 Aug 15;55(16):3543–3550. [PubMed] [Google Scholar]
  102. Schwartz E. L., Baptiste N., Wadler S., Makower D. Thymidine phosphorylase mediates the sensitivity of human colon carcinoma cells to 5-fluorouracil. J Biol Chem. 1995 Aug 11;270(32):19073–19077. doi: 10.1074/jbc.270.32.19073. [DOI] [PubMed] [Google Scholar]
  103. Schwartz E. L., Hoffman M., O'Connor C. J., Wadler S. Stimulation of 5-fluorouracil metabolic activation by interferon-alpha in human colon carcinoma cells. Biochem Biophys Res Commun. 1992 Feb 14;182(3):1232–1239. doi: 10.1016/0006-291x(92)91863-l. [DOI] [PubMed] [Google Scholar]
  104. Schwartz M. Thymidine phosphorylase from Escherichia coli. Properties and kinetics. Eur J Biochem. 1971 Jul 29;21(2):191–198. doi: 10.1111/j.1432-1033.1971.tb01455.x. [DOI] [PubMed] [Google Scholar]
  105. Schwartz P. M., Milstone L. M. Thymidine phosphorylase in human epidermal keratinocytes. Biochem Pharmacol. 1988 Jan 15;37(2):353–355. doi: 10.1016/0006-2952(88)90740-x. [DOI] [PubMed] [Google Scholar]
  106. Scocca J. J. Purification and substrate specificity of pyrimidine nucleoside phosphorylase from Haemophilus influenzae. J Biol Chem. 1971 Nov;246(21):6606–6610. [PubMed] [Google Scholar]
  107. Secrist J. A., 3rd, Niwas S., Rose J. D., Babu Y. S., Bugg C. E., Erion M. D., Guida W. C., Ealick S. E., Montgomery J. A. Structure-based design of inhibitors of purine nucleoside phosphorylase. 2. 9-Alicyclic and 9-heteroalicyclic derivatives of 9-deazaguanine. J Med Chem. 1993 Jun 25;36(13):1847–1854. doi: 10.1021/jm00065a007. [DOI] [PubMed] [Google Scholar]
  108. Secrist J. A., 3rd, Parker W. B., Allan P. W., Bennett L. L., Jr, Waud W. R., Truss J. W., Fowler A. T., Montgomery J. A., Ealick S. E., Wells A. H. Gene therapy of cancer: activation of nucleoside prodrugs with E. coli purine nucleoside phosphorylase. Nucleosides Nucleotides. 1999 Apr-May;18(4-5):745–757. doi: 10.1080/15257779908041562. [DOI] [PubMed] [Google Scholar]
  109. Seeger C., Poulsen C., Dandanell G. Identification and characterization of genes (xapA, xapB, and xapR) involved in xanthosine catabolism in Escherichia coli. J Bacteriol. 1995 Oct;177(19):5506–5516. doi: 10.1128/jb.177.19.5506-5516.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Senesi S., Falcone G., Mura U., Sgarrella F., Ipata P. L. A specific adenosine phosphorylase, distinct from purine nucleoside phosphorylase. FEBS Lett. 1976 May 1;64(2):353–357. doi: 10.1016/0014-5793(76)80327-4. [DOI] [PubMed] [Google Scholar]
  111. Sharma V., Grubmeyer C., Sacchettini J. C. Crystal structure of quinolinic acid phosphoribosyltransferase from Mmycobacterium tuberculosis: a potential TB drug target. Structure. 1998 Dec 15;6(12):1587–1599. doi: 10.1016/s0969-2126(98)00156-7. [DOI] [PubMed] [Google Scholar]
  112. Shi W., Basso L. A., Santos D. S., Tyler P. C., Furneaux R. H., Blanchard J. S., Almo S. C., Schramm V. L. Structures of purine nucleoside phosphorylase from Mycobacterium tuberculosis in complexes with immucillin-H and its pieces. Biochemistry. 2001 Jul 27;40(28):8204–8215. doi: 10.1021/bi010585p. [DOI] [PubMed] [Google Scholar]
  113. Shirae H., Yokozeki K. Purifications and properties of orotidine-phosphorolyzing enzyme and purine nucleoside phosphorylase from Erwinia carotovora AJ 2992. Agric Biol Chem. 1991 Jul;55(7):1849–1857. [PubMed] [Google Scholar]
  114. Short S. A., Armstrong S. R., Ealick S. E., Porter D. J. Active site amino acids that participate in the catalytic mechanism of nucleoside 2'-deoxyribosyltransferase. J Biol Chem. 1996 Mar 1;271(9):4978–4987. doi: 10.1074/jbc.271.9.4978. [DOI] [PubMed] [Google Scholar]
  115. Shugart L., Mahoney L., Chastain B. Kinetic studies of Drosophila melanogaster methylthioadenosine nucleoside phosphorylase. Int J Biochem. 1981;13(5):559–564. doi: 10.1016/0020-711x(81)90180-4. [DOI] [PubMed] [Google Scholar]
  116. Smar M., Short S. A., Wolfenden R. Lyase activity of nucleoside 2-deoxyribosyltransferase: transient generation of ribal and its use in the synthesis of 2'-deoxynucleosides. Biochemistry. 1991 Aug 13;30(32):7908–7912. doi: 10.1021/bi00246a006. [DOI] [PubMed] [Google Scholar]
  117. Sorscher E. J., Peng S., Bebok Z., Allan P. W., Bennett L. L., Jr, Parker W. B. Tumor cell bystander killing in colonic carcinoma utilizing the Escherichia coli DeoD gene to generate toxic purines. Gene Ther. 1994 Jul;1(4):233–238. [PubMed] [Google Scholar]
  118. Stoeckler J. D., Cambor C., Parks R. E., Jr Human erythrocytic purine nucleoside phosphorylase: reaction with sugar-modified nucleoside substrates. Biochemistry. 1980 Jan 8;19(1):102–107. doi: 10.1021/bi00542a016. [DOI] [PubMed] [Google Scholar]
  119. Stoeckler J. D., Poirot A. F., Smith R. M., Parks R. E., Jr, Ealick S. E., Takabayashi K., Erion M. D. Purine nucleoside phosphorylase. 3. Reversal of purine base specificity by site-directed mutagenesis. Biochemistry. 1997 Sep 30;36(39):11749–11756. doi: 10.1021/bi961971n. [DOI] [PubMed] [Google Scholar]
  120. Stoop J. W., Zegers B. J., Hendrickx G. F., van Heukelom L. H., Staal G. E., de Bree P. K., Wadman S. K., Ballieux R. E. Purine nucleoside phosphorylase deficiency associated with selective cellular immunodeficiency. N Engl J Med. 1977 Mar 24;296(12):651–655. doi: 10.1056/NEJM197703242961203. [DOI] [PubMed] [Google Scholar]
  121. Takebayashi Y., Yamada K., Maruyama I., Fujii R., Akiyama S., Aikou T. The expression of thymidine phosphorylase and thrombomodulin in human colorectal carcinomas. Cancer Lett. 1995 May 25;92(1):1–7. doi: 10.1016/0304-3835(94)03754-7. [DOI] [PubMed] [Google Scholar]
  122. Takebayashi Y., Yamada K., Ohmoto Y., Sameshima T., Miyadera K., Yamada Y., Akiyama S., Aikou T. The correlation of thymidine phosphorylase activity with the expression of interleukin 1 alpha, interferon alpha and interferon gamma in human colorectal carcinoma. Cancer Lett. 1995 Aug 16;95(1-2):57–62. doi: 10.1016/0304-3835(95)03865-t. [DOI] [PubMed] [Google Scholar]
  123. Tebbe J., Bzowska A., Wielgus-Kutrowska B., Schröder W., Kazimierczuk Z., Shugar D., Saenger W., Koellner G. Crystal structure of the purine nucleoside phosphorylase (PNP) from Cellulomonas sp. and its implication for the mechanism of trimeric PNPs. J Mol Biol. 1999 Dec 17;294(5):1239–1255. doi: 10.1006/jmbi.1999.3327. [DOI] [PubMed] [Google Scholar]
  124. Toi M., Hoshina S., Taniguchi T., Yamamoto Y., Ishitsuka H., Tominaga T. Expression of platelet-derived endothelial cell growth factor/thymidine phosphorylase in human breast cancer. Int J Cancer. 1995 Apr 21;64(2):79–82. doi: 10.1002/ijc.2910640202. [DOI] [PubMed] [Google Scholar]
  125. Tuttle J. V., Krenitsky T. A. Effects of acyclovir and its metabolites on purine nucleoside phosphorylase. J Biol Chem. 1984 Apr 10;259(7):4065–4069. [PubMed] [Google Scholar]
  126. Ueda K., Fukushima M., Okayama H., Hayaishi O. Nicotinamide adenine dinucleotide glycohydrolase from rat liver nuclei. Isolation and characterization of a new enzyme. J Biol Chem. 1975 Oct 10;250(19):7541–7546. [PubMed] [Google Scholar]
  127. Vos S., de Jersey J., Martin J. L. Crystal structure of Escherichia coli xanthine phosphoribosyltransferase. Biochemistry. 1997 Apr 8;36(14):4125–4134. doi: 10.1021/bi962640d. [DOI] [PubMed] [Google Scholar]
  128. Walter M. R., Cook W. J., Cole L. B., Short S. A., Koszalka G. W., Krenitsky T. A., Ealick S. E. Three-dimensional structure of thymidine phosphorylase from Escherichia coli at 2.8 A resolution. J Biol Chem. 1990 Aug 15;265(23):14016–14022. doi: 10.2210/pdb1tpt/pdb. [DOI] [PubMed] [Google Scholar]
  129. Watanabe S., Uchida T. Cloning and expression of human uridine phosphorylase. Biochem Biophys Res Commun. 1995 Nov 2;216(1):265–272. doi: 10.1006/bbrc.1995.2619. [DOI] [PubMed] [Google Scholar]
  130. Woodman P. W., Sarrif A. M., Heidelberger C. Specificity of pyrimidine nucleoside phosphorylases and the phosphorolysis of 5-fluoro-2'-deoxyuridine. Cancer Res. 1980 Mar;40(3):507–511. [PubMed] [Google Scholar]
  131. Yamada E. W. Pyrimidine nucleoside phosphorylases of rat liver. Separation by ion exchange chromatography and studies of the effect of cytidine or uridine administration. J Biol Chem. 1968 Apr 10;243(7):1649–1655. [PubMed] [Google Scholar]
  132. Yoshimura A., Kuwazuru Y., Furukawa T., Yoshida H., Yamada K., Akiyama S. Purification and tissue distribution of human thymidine phosphorylase; high expression in lymphocytes, reticulocytes and tumors. Biochim Biophys Acta. 1990 Apr 23;1034(1):107–113. doi: 10.1016/0304-4165(90)90160-x. [DOI] [PubMed] [Google Scholar]
  133. ZIMMERMAN M. DEOXYRIBOSYL TRANSFER. II. NUCLEOSIDE:PYRIMIDINE DEOXYRIBOSYLTRANSFERASE ACTIVITY OF THREE PARTIALLY PURIFIED THYMIDINE PHOSPHORYLASES. J Biol Chem. 1964 Aug;239:2622–2627. [PubMed] [Google Scholar]
  134. ZIMMERMAN M., SEIDENBERG J. DEOXYRIBOSYL TRANSFER. I. THYMIDINE PHOSPHORYLASE AND NUCLEOSIDE DEOXYRIBOSYLTRANSFERASE IN NORMAL AND MALIGNANT TISSUES. J Biol Chem. 1964 Aug;239:2618–2621. [PubMed] [Google Scholar]
  135. Zappia V., Della Ragione F., Pontoni G., Gragnaniello V., Cartenì-Farina M. Human 5'-deoxy-5'-methylthioadenosine phosphorylase: kinetic studies and catalytic mechanism. Adv Exp Med Biol. 1988;250:165–177. doi: 10.1007/978-1-4684-5637-0_15. [DOI] [PubMed] [Google Scholar]
  136. Zappia V., Oliva A., Cacciapuoti G., Galletti P., Mignucci G., Cartení-Farina M. Substrate specificity of 5'-methylthioadenosine phosphorylase from human prostate. Biochem J. 1978 Dec 1;175(3):1043–1050. doi: 10.1042/bj1751043. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES