Abstract
The C-terminal 191-residue module of Cel5A from the alkalophilic Bacillus sp. 1139 comprises a carbohydrate-binding module (CBM) belonging to a previously unidentified family that we have classified as CBM family 28. This example, called CBM28, bound specifically to cello-oligosaccharides and mixed beta-(1,3)(1,4)-glucans (barley beta-glucan) with association constants of approximately (1-4)x10(4) M(-1). Its binding to barley beta-glucan was remarkably insensitive to pH between 7.0 and 10.9, in keeping with its alkalophilic source. CBM28 bound to cellulose having a significant non-crystalline content with an association constant similar to that for its binding to soluble glucans. CBM17 (CBM family 17) and CBM28 modules naturally occur as tandems. The CBM17/CBM28 tandem from Cel5A bound with apparent co-operativity to barley beta-glucan. The association of CBM28 with cello-oligosaccharides was driven enthalpically and marked by the different thermodynamic contribution of three putative binding subsites that accommodate a cellohexaose molecule.
Full Text
The Full Text of this article is available as a PDF (260.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bolam D. N., Ciruela A., McQueen-Mason S., Simpson P., Williamson M. P., Rixon J. E., Boraston A., Hazlewood G. P., Gilbert H. J. Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J. 1998 May 1;331(Pt 3):775–781. doi: 10.1042/bj3310775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bolam D. N., Xie H., White P., Simpson P. J., Hancock S. M., Williamson M. P., Gilbert H. J. Evidence for synergy between family 2b carbohydrate binding modules in Cellulomonas fimi xylanase 11A. Biochemistry. 2001 Feb 27;40(8):2468–2477. doi: 10.1021/bi002564l. [DOI] [PubMed] [Google Scholar]
- Boraston A. B., Chiu P., Warren R. A., Kilburn D. G. Specificity and affinity of substrate binding by a family 17 carbohydrate-binding module from Clostridium cellulovorans cellulase 5A. Biochemistry. 2000 Sep 12;39(36):11129–11136. doi: 10.1021/bi0007728. [DOI] [PubMed] [Google Scholar]
- Boraston A. B., Creagh A. L., Alam M. M., Kormos J. M., Tomme P., Haynes C. A., Warren R. A., Kilburn D. G. Binding specificity and thermodynamics of a family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A. Biochemistry. 2001 May 29;40(21):6240–6247. doi: 10.1021/bi0101695. [DOI] [PubMed] [Google Scholar]
- Brun E., Johnson P. E., Creagh A. L., Tomme P., Webster P., Haynes C. A., McIntosh L. P. Structure and binding specificity of the second N-terminal cellulose-binding domain from Cellulomonas fimi endoglucanase C. Biochemistry. 2000 Mar 14;39(10):2445–2458. doi: 10.1021/bi992079u. [DOI] [PubMed] [Google Scholar]
- Charnock S. J., Bolam D. N., Turkenburg J. P., Gilbert H. J., Ferreira L. M., Davies G. J., Fontes C. M. The X6 "thermostabilizing" domains of xylanases are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. Biochemistry. 2000 May 2;39(17):5013–5021. doi: 10.1021/bi992821q. [DOI] [PubMed] [Google Scholar]
- Chervenak M. C., Toone E. J. Calorimetric analysis of the binding of lectins with overlapping carbohydrate-binding ligand specificities. Biochemistry. 1995 Apr 25;34(16):5685–5695. doi: 10.1021/bi00016a045. [DOI] [PubMed] [Google Scholar]
- Creagh A. L., Ong E., Jervis E., Kilburn D. G., Haynes C. A. Binding of the cellulose-binding domain of exoglucanase Cex from Cellulomonas fimi to insoluble microcrystalline cellulose is entropically driven. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12229–12234. doi: 10.1073/pnas.93.22.12229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuff J. A., Clamp M. E., Siddiqui A. S., Finlay M., Barton G. J. JPred: a consensus secondary structure prediction server. Bioinformatics. 1998;14(10):892–893. doi: 10.1093/bioinformatics/14.10.892. [DOI] [PubMed] [Google Scholar]
- Gilkes N. R., Jervis E., Henrissat B., Tekant B., Miller R. C., Jr, Warren R. A., Kilburn D. G. The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J Biol Chem. 1992 Apr 5;267(10):6743–6749. [PubMed] [Google Scholar]
- Gill J., Rixon J. E., Bolam D. N., McQueen-Mason S., Simpson P. J., Williamson M. P., Hazlewood G. P., Gilbert H. J. The type II and X cellulose-binding domains of Pseudomonas xylanase A potentiate catalytic activity against complex substrates by a common mechanism. Biochem J. 1999 Sep 1;342(Pt 2):473–480. [PMC free article] [PubMed] [Google Scholar]
- Henrissat B., Teeri T. T., Warren R. A. A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett. 1998 Mar 27;425(2):352–354. doi: 10.1016/s0014-5793(98)00265-8. [DOI] [PubMed] [Google Scholar]
- Mach H., Middaugh C. R., Lewis R. V. Statistical determination of the average values of the extinction coefficients of tryptophan and tyrosine in native proteins. Anal Biochem. 1992 Jan;200(1):74–80. doi: 10.1016/0003-2697(92)90279-g. [DOI] [PubMed] [Google Scholar]
- McLean B. W., Bray M. R., Boraston A. B., Gilkes N. R., Haynes C. A., Kilburn D. G. Analysis of binding of the family 2a carbohydrate-binding module from Cellulomonas fimi xylanase 10A to cellulose: specificity and identification of functionally important amino acid residues. Protein Eng. 2000 Nov;13(11):801–809. doi: 10.1093/protein/13.11.801. [DOI] [PubMed] [Google Scholar]
- Meinke A., Gilkes N. R., Kilburn D. G., Miller R. C., Jr, Warren R. A. Multiple domains in endoglucanase B (CenB) from Cellulomonas fimi: functions and relatedness to domains in other polypeptides. J Bacteriol. 1991 Nov;173(22):7126–7135. doi: 10.1128/jb.173.22.7126-7135.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meissner K., Wassenberg D., Liebl W. The thermostabilizing domain of the modular xylanase XynA of Thermotoga maritima represents a novel type of binding domain with affinity for soluble xylan and mixed-linkage beta-1,3/beta-1, 4-glucan. Mol Microbiol. 2000 May;36(4):898–912. doi: 10.1046/j.1365-2958.2000.01909.x. [DOI] [PubMed] [Google Scholar]
- Ragone R., Colonna G., Balestrieri C., Servillo L., Irace G. Determination of tyrosine exposure in proteins by second-derivative spectroscopy. Biochemistry. 1984 Apr 10;23(8):1871–1875. doi: 10.1021/bi00303a044. [DOI] [PubMed] [Google Scholar]
- Simpson P. J., Bolam D. N., Cooper A., Ciruela A., Hazlewood G. P., Gilbert H. J., Williamson M. P. A family IIb xylan-binding domain has a similar secondary structure to a homologous family IIa cellulose-binding domain but different ligand specificity. Structure. 1999 Jul 15;7(7):853–864. doi: 10.1016/s0969-2126(99)80108-7. [DOI] [PubMed] [Google Scholar]
- Sturtevant J. M. Heat capacity and entropy changes in processes involving proteins. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2236–2240. doi: 10.1073/pnas.74.6.2236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sunna A., Gibbs M. D., Bergquist P. L. Identification of novel beta-mannan- and beta-glucan-binding modules: evidence for a superfamily of carbohydrate-binding modules. Biochem J. 2001 Jun 15;356(Pt 3):791–798. doi: 10.1042/0264-6021:3560791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomme P., Creagh A. L., Kilburn D. G., Haynes C. A. Interaction of polysaccharides with the N-terminal cellulose-binding domain of Cellulomonas fimi CenC. 1. Binding specificity and calorimetric analysis. Biochemistry. 1996 Nov 5;35(44):13885–13894. doi: 10.1021/bi961185i. [DOI] [PubMed] [Google Scholar]