Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jan 15;361(Pt 2):277–286. doi: 10.1042/0264-6021:3610277

Sarcolipin uncouples hydrolysis of ATP from accumulation of Ca2+ by the Ca2+-ATPase of skeletal-muscle sarcoplasmic reticulum.

Wendy S Smith 1, Robert Broadbridge 1, J Malcolm East 1, Anthony G Lee 1
PMCID: PMC1222307  PMID: 11772399

Abstract

Sarcolipin (SLN) is a small peptide found in the sarcoplasmic reticulum of skeletal muscle. It is predicted to contain a single hydrophobic transmembrane alpha-helix. Fluorescence emission spectra for the single Trp residue of SLN suggest that SLN incorporates fully into bilayers of dioleoylphosphatidylcholine, but only partially into bilayers of phosphatidylcholines with long (C(22) or C(24)) fatty acyl chains. The fluorescence of SLN is quenched in bilayers of dibromostearoylphosphatidylcholine, also consistent with incorporation into the lipid bilayer. SLN was reconstituted with the Ca(2+)-ATPase of skeletal-muscle sarcoplasmic reticulum. Even at a 50:1 molar ratio of SLN/ATPase, SLN had no significant effect on the rate of ATP hydrolysis by the ATPase or on the Ca(2+)-dependence of ATP hydrolysis. However, at a molar ratio of SLN/ATPase of 2:1 or higher the presence of SLN resulted in a marked decrease in the level of accumulation of Ca(2+) by reconstituted vesicles. The effect of SLN was structurally specific and did not result from a breakdown in the vesicular structure or from the formation of non-specific ion channels. Vesicles were impermeable to Ca(2+) in the absence of ATP in the external medium. The effects of SLN on accumulation of Ca(2+) can be simulated assuming that SLN increases the rate of slippage on the ATPase and the rate of passive leak of Ca(2+) mediated by the ATPase. It is suggested that the presence of SLN could be important in non-shivering thermogenesis, a process in which heat is generated by hydrolysis of ATP by skeletal-muscle sarcoplasmic reticulum.

Full Text

The Full Text of this article is available as a PDF (218.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Block B. A. Thermogenesis in muscle. Annu Rev Physiol. 1994;56:535–577. doi: 10.1146/annurev.ph.56.030194.002535. [DOI] [PubMed] [Google Scholar]
  2. Dalton K. A., East J. M., Mall S., Oliver S., Starling A. P., Lee A. G. Interaction of phosphatidic acid and phosphatidylserine with the Ca2+-ATPase of sarcoplasmic reticulum and the mechanism of inhibition. Biochem J. 1998 Feb 1;329(Pt 3):637–646. doi: 10.1042/bj3290637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dalton K. A., Pilot J. D., Mall S., East J. M., Lee A. G. Anionic phospholipids decrease the rate of slippage on the Ca(2+)-ATPase of sarcoplasmic reticulum. Biochem J. 1999 Sep 1;342(Pt 2):431–438. [PMC free article] [PubMed] [Google Scholar]
  4. East J. M., Lee A. G. Lipid selectivity of the calcium and magnesium ion dependent adenosinetriphosphatase, studied with fluorescence quenching by a brominated phospholipid. Biochemistry. 1982 Aug 17;21(17):4144–4151. doi: 10.1021/bi00260a035. [DOI] [PubMed] [Google Scholar]
  5. Gayan-Ramirez G., Vanzeir L., Wuytack F., Decramer M. Corticosteroids decrease mRNA levels of SERCA pumps, whereas they increase sarcolipin mRNA in the rat diaphragm. J Physiol. 2000 Apr 15;524(Pt 2):387–397. doi: 10.1111/j.1469-7793.2000.t01-2-00387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Godt R. E. Calcium-activated tension of skinned muscle fibers of the frog. Dependence on magnesium adenosine triphosphate concentration. J Gen Physiol. 1974 Jun;63(6):722–739. doi: 10.1085/jgp.63.6.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gould G. W., McWhirter J. M., East J. M., Lee A. G. Uptake of Ca2+ mediated by the (Ca2+ + Mg2+)-ATPase in reconstituted vesicles. Biochim Biophys Acta. 1987 Nov 2;904(1):36–44. doi: 10.1016/0005-2736(87)90084-8. [DOI] [PubMed] [Google Scholar]
  8. Hardwicke P. M., Green N. M. The effect of delipidation on the adenosine triphosphatase of sarcoplasmic reticulum. Electron microscopy and physical properties. Eur J Biochem. 1974 Feb 15;42(1):183–193. doi: 10.1111/j.1432-1033.1974.tb03328.x. [DOI] [PubMed] [Google Scholar]
  9. Hughes G., Starling A. P., Sharma R. P., East J. M., Lee A. G. An investigation of the mechanism of inhibition of the Ca(2+)-ATPase by phospholamban. Biochem J. 1996 Sep 15;318(Pt 3):973–979. doi: 10.1042/bj3180973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Knowles A., Zimniak P., Alfonzo M., Zimniak A., Racker E. Isolation and characterization of proteolipids from sarcoplasmic reticulum. J Membr Biol. 1980 Aug 7;55(3):233–239. doi: 10.1007/BF01869464. [DOI] [PubMed] [Google Scholar]
  11. Levy D., Seigneuret M., Bluzat A., Rigaud J. L. Evidence for proton countertransport by the sarcoplasmic reticulum Ca2(+)-ATPase during calcium transport in reconstituted proteoliposomes with low ionic permeability. J Biol Chem. 1990 Nov 15;265(32):19524–19534. [PubMed] [Google Scholar]
  12. Lévy D., Gulik A., Bluzat A., Rigaud J. L. Reconstitution of the sarcoplasmic reticulum Ca(2+)-ATPase: mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. Biochim Biophys Acta. 1992 Jun 30;1107(2):283–298. doi: 10.1016/0005-2736(92)90415-i. [DOI] [PubMed] [Google Scholar]
  13. MacLennan D. H. Isolation of proteins of the sarcoplasmic reticulum. Methods Enzymol. 1974;32:291–302. doi: 10.1016/0076-6879(74)32030-7. [DOI] [PubMed] [Google Scholar]
  14. MacLennan D. H., Reithmeier R. A., Shoshan V., Campbell K. P., LeBel D., Herrmann T. R., Shamoo A. E. Ion pathways in proteins of the sarcoplasmic reticulum. Ann N Y Acad Sci. 1980;358:138–148. doi: 10.1111/j.1749-6632.1980.tb15392.x. [DOI] [PubMed] [Google Scholar]
  15. Mall S., Broadbridge R., Sharma R. P., Lee A. G., East J. M. Effects of aromatic residues at the ends of transmembrane alpha-helices on helix interactions with lipid bilayers. Biochemistry. 2000 Feb 29;39(8):2071–2078. doi: 10.1021/bi992205u. [DOI] [PubMed] [Google Scholar]
  16. Maruyama K., MacLennan D. H. Mutation of aspartic acid-351, lysine-352, and lysine-515 alters the Ca2+ transport activity of the Ca2+-ATPase expressed in COS-1 cells. Proc Natl Acad Sci U S A. 1988 May;85(10):3314–3318. doi: 10.1073/pnas.85.10.3314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mitidieri F., de Meis L. Ca(2+) release and heat production by the endoplasmic reticulum Ca(2+)-ATPase of blood platelets. Effect of the platelet activating factor. J Biol Chem. 1999 Oct 1;274(40):28344–28350. doi: 10.1074/jbc.274.40.28344. [DOI] [PubMed] [Google Scholar]
  18. Navarro J., Toivio-Kinnucan M., Racker E. Effect of lipid composition on the calcium/adenosine 5'-triphosphate coupling ratio of the Ca2+-ATPase of sarcoplasmic reticulum. Biochemistry. 1984 Jan 3;23(1):130–135. doi: 10.1021/bi00296a021. [DOI] [PubMed] [Google Scholar]
  19. Odermatt A., Becker S., Khanna V. K., Kurzydlowski K., Leisner E., Pette D., MacLennan D. H. Sarcolipin regulates the activity of SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem. 1998 May 15;273(20):12360–12369. doi: 10.1074/jbc.273.20.12360. [DOI] [PubMed] [Google Scholar]
  20. Odermatt A., Taschner P. E., Scherer S. W., Beatty B., Khanna V. K., Cornblath D. R., Chaudhry V., Yee W. C., Schrank B., Karpati G. Characterization of the gene encoding human sarcolipin (SLN), a proteolipid associated with SERCA1: absence of structural mutations in five patients with Brody disease. Genomics. 1997 Nov 1;45(3):541–553. doi: 10.1006/geno.1997.4967. [DOI] [PubMed] [Google Scholar]
  21. Racker E., Eytan E. A coupling factor from sarcoplasmic reticulum required for the translocation of Ca2+ ions in a reconstituted Ca2+ATPase pump. J Biol Chem. 1975 Sep 25;250(18):7533–7534. [PubMed] [Google Scholar]
  22. Shamoo A. E., MacLennan D. H. A Ca++-dependent and -selective ionophore as part of the Ca++ plus Mg++-dependent adenosinetriphosphatase of sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3522–3526. doi: 10.1073/pnas.71.9.3522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tada M. Molecular structure and function of phospholamban in regulating the calcium pump from sarcoplasmic reticulum. Ann N Y Acad Sci. 1992 Nov 30;671:92–103. doi: 10.1111/j.1749-6632.1992.tb43787.x. [DOI] [PubMed] [Google Scholar]
  24. Toyofuku T., Kurzydlowski K., Tada M., MacLennan D. H. Amino acids Glu2 to Ile18 in the cytoplasmic domain of phospholamban are essential for functional association with the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 1994 Jan 28;269(4):3088–3094. [PubMed] [Google Scholar]
  25. Warren G. B., Toon P. A., Birdsall N. J., Lee A. G., Metcalfe J. C. Reconstitution of a calcium pump using defined membrane components. Proc Natl Acad Sci U S A. 1974 Mar;71(3):622–626. doi: 10.1073/pnas.71.3.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wawrzynow A., Theibert J. L., Murphy C., Jona I., Martonosi A., Collins J. H. Sarcolipin, the "proteolipid" of skeletal muscle sarcoplasmic reticulum, is a unique, amphipathic, 31-residue peptide. Arch Biochem Biophys. 1992 Nov 1;298(2):620–623. doi: 10.1016/0003-9861(92)90457-8. [DOI] [PubMed] [Google Scholar]
  27. Webb R. J., East J. M., Sharma R. P., Lee A. G. Hydrophobic mismatch and the incorporation of peptides into lipid bilayers: a possible mechanism for retention in the Golgi. Biochemistry. 1998 Jan 13;37(2):673–679. doi: 10.1021/bi972441+. [DOI] [PubMed] [Google Scholar]
  28. Webb R. J., Khan Y. M., East J. M., Lee A. G. The importance of carboxyl groups on the lumenal side of the membrane for the function of the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 2000 Jan 14;275(2):977–982. doi: 10.1074/jbc.275.2.977. [DOI] [PubMed] [Google Scholar]
  29. de Meis L. ATP synthesis and heat production during Ca(2+) efflux by sarcoplasmic reticulum Ca(2+)-ATPase. Biochem Biophys Res Commun. 2000 Sep 16;276(1):35–39. doi: 10.1006/bbrc.2000.3418. [DOI] [PubMed] [Google Scholar]
  30. de Meis L. Control of heat produced during ATP hydrolysis by the sarcoplasmic reticulum Ca(2+)-ATPase in the absence of a Ca2+ gradient. Biochem Biophys Res Commun. 1998 Feb 13;243(2):598–600. doi: 10.1006/bbrc.1997.8028. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES